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Introduction

Two previously published observations were combined to suggest a new physical method to
assess breast cancer risk. The first published observation demonstrated that optical
transillumination spectroscopy can provide information about the molecular contributions in
breast tissue, and the second showed that parenchymal density patterns, which are caused by
differences in molecular composition of breast tissue, have the highest odds ratio towards breast
cancer as a physical examination method. Thus, this study intended to establish a correlation and
the strength thereof, between optical transillumination spectroscopy (OTS) and parenchymal
density patterns, as an intermediary towards breast cancer risk in a case-control cross sectional
study on 300 women. The study was based on two hypotheses: 1) transillumination spectroscopy
of the female breast correlates with the parenchymal tissue density patterns as demonstrated by
x-ray mammography, and 2) transillumination spectra can be understood quantitatively in terms
of constituent tissue chromophores and morphology through analytical modelling of the spectra.
To date 282 women were recruited into the study (SARS related shortfall of the complete
intended recruitment).

We established that OTS can predict high versus low tissue density with a sensitivity and
specificity of > 0.97 each, thus effectively providing the same odds ratio towards breast cancer as
parenchymal density patterns, without the use of ionizing radiation and the need for a trained
radiologist in evaluating the mammograms.

Body

The previous approved statement of work for this project is listed below, as are the outcomes
throughout this study period to date. It is important to note that the project yielded a large body
of results, the analysis of which will most likely continue for the next few months.

Task 1. Instrument improvements (1-4)

o A spectrophotometer with extended wavelength range will be constructed using a Si and an
InGaAs based CCD arrays with a bifurcated fiber bundle directing the light from the skin to
the two detectors. Note funds are requested only for the InGaAs detector and the associated
spectrophotometer. Additionally an excitation light source delivering ~ 500 mW in the 550
nm to 1.3 um range will be designed. (1-4 month)

o The system will be tested initially on 6-8 volunteers to demonstrate comfort and safe
operation (e.g. no heating of the skin) and to optimise the signal integration parameters. (3-4
month)

The spectrophotometer and light source were constructed and tested on a limited number of
volunteers. The light source could deliver up to 400 mW to the tissue in the intended optical
window from 550 nm to 1.3 pm. Testing initially executed exclusively on Caucasian volunteers
(n=6) with instructions to the volunteers to report any sensation of warmth or heat, resulted in a
report of warmth from a fair (>50 %) number of volunteers. Reducing the total delivered power
to approximately 250 mW spread over the entire wavelength band resulted in poor signal to
noise ratio. At this time we decided to limit the wavelength band to 550 nm to 1.1 um at 250
mW total power on a larger group of volunteers (n=28) to determine the achievable signal to
noise ratio and the predictive power of OTS using only the restricted wavelength band. As the
analysis of the 2™ subset was encouraging in terms of predictive power (using PCA, see below)
and signal to noise ratio without any further report of warmth in the irradiated tissue, we




continued with this restricted wavelength bandwidth. Additionally, our initial exclusion of
women with highly pigmented skin, as in Latin American and African American women, was no
longer required and hence dropped. Table 1 shows the ethnic makeup of the study population in
relation to the general population of the Greater Toronto Area. Figure 1 shows a volunteer
undergoing OTS. For a more detailed description of the instrument hardware and the execution
of the measurements please see Simick et. al.[1] also provided in Appendix 1. The publication
also describes how the attenuation spectra were derived from the raw spectra using a daily
transillumination standard to correct for variations in the wavelength dependent transfer function
of the system.

Table 1. Study ethnic contributions of volunteers (May 2003)

% General Population

Ethnic Group % Study population | in the Greater Toronto
Area

Caucasian 88.8 63.2
South Asian 3.8 10.2
South east Asian 0.0 1.2
Black 5.1 6.7
Indigenous 0.3 0.4
Others/ including 2.0 18.4
Hispanics

Figure 1. Setup for transillumination of breast for
cancer risk assessment. Light delivery via a liquid
light guide with the detector fiber visible at the
bottom of the image. Minimal pressure is applied
only to provide good coupling between the optodes

and the tissue.

Task 2. Correlation of optical transillumination spectroscopy and parenchymal tissue density
pattern (4-30 months). Related to specific aim 1.

o Total of 300 subjects will contribute to the spectroscopy database, stratified into 6 groups
(low, medium and high parenchymal density pattern for pre- and post-menopausal women
respectively) (5 -30 months).

o A subgroup of the subjects (60) will be asked to participate in the low resolution sector scans
to analyse the variability of transillumination patterns with local changes in the parenchymal
density pattern (6-24 months).




* Initial set-up of PCA model for extracting spectral contributions and ranges of interest (4- 8
months).

* Establishing initial model identifying wavelength ranges which show possible correlation
with tissue density (12 months and 24 months).

 Just prior to the outbreak of SARS in various Toronto Hospitals (March 2003) and the associated

restrictions of allowing volunteers into any hospital, including the institute where this study was
conducted, recruitment stood at 282 volunteers. (We are currently completing the recruiting with
all 13 volunteers scheduled by August 15™). Global analysis, based on PCA is available based
on all 282 volunteers; however, some specific tests are completed only on a subset of 156
volunteers, with some analysis methods still pending. Table 2 shows the recruitment breakdown
based on tissue density for those volunteers whose classification is available, along with a
comparison to the population proportions based on the Canadian National Breast Cancer
Screening Survey [2]. As the study and the population proportions are similar, all analyses are
presented with the assumption that the results are actually those expected for the general
population. This is a deviation from the initial statement of work, but we feel that the conclusions
to be drawn from this study are now stronger. Table 2 also gives the total number of spectra
available for the most recent PCA analysis. As a first approach we did not introduce
stratifications either based on menopausal status, week during the monthly cycle (if applicable),
ethnic background, age, body mass index (BMI), parity, or measurement position.

Table 2. Breakdown of study volunteers included in most analyses to date: including study and population

Density . o Stud)t Populati.on
Category Training Validation Total Proportion Proportion
Set Set (%) (%)
Low 80 (640) 26 (208) 106 (848) 37.6 37
Medium 103 (824) 34(272) 137 (1096) 48.6 49
High 30 (240) 9(72) 39 (312) 13.8 14
Totals 213 (1704) 69 (552) 282 (2256)

proportions (numbers in parentheses refer to the total number of optical spectra available to date).

Performance of a low resolution sector scan of the breast was limited to only 4 volunteers. This
subtask was not further pursued since, firstly, the actual volume optically interrogated can
comprise up to 25 cc for a 5 cm interoptode distance, thus small variations in the tissue density
between sectors are hardly noticeable. Secondly, as boundary losses of photons at the edge of the
breast can introduce variability comparable to that seen due to density changes in these rather
large volumes, changes in the spectra are difficult
to attribute to either changes in the boundary
losses or density changes. Figure 2 illustrates the
changes in the transmission spectra of a volunteer
undergoing a 1D sector scan from the center of
the breast to the medial edge.
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‘left medial 3” is 1 cm from the edge. No significant spectral changes are seen for the 1 cm motion of the optode
pair.

Figure 3 shows examples of thickness and transfer function corrected transillumination spectra
for a) women with low and b) women with high tissue density according to the radiologist.

PCA training on the entire data set resulted in the 4 principle components depicted in figure 4.
Table 3, column titled ‘All positions’, gives the variance of the entire data set captured by these 4
principle components. As components 2 to 4 capture only a small amount of the variance, their
order sometimes changes when analysing various subgroups, as shown below.

Table 3. Variance [%)] accounted for by each principle component for all positions and for each measurement
position.

Principle All positions Center Medial Distal Lateral
Component
) 2, . 99.86 99.85 99.89 99.87 99.88
D2 0.07 0.09 0.06 0.07 0.06
D3 0.05 0.04 0.03 0.04 0.04
P4 0.01 0.01 0.01 0.01 0.01

Figure 3. Representative
examples of thickness and
transfer function corrected
transillumination spectra from
women with either a) low or b)
high tissue density.

Figure 4. Resulting principle
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(925 nm), water (970nm) oxy haemoglobin (~750 nm) as well as deoxy haemoglobin, melanin
and the overall light scattering.

Principle component analysis thus decomposes any given transillumination spectrum into
component scores denoted #. Plotting these component scores, #;, against one another in either a
2D or a 3D space, permits identification of related spectra exhibiting similar traits.

Figure 5 shows a 2D plot of the data where clusters are defined by ellipsoids giving iso-
probability lines of finding members of a certain class (either high or low tissue density) within
them. To calculate the sensitivity and specificity of OTS to predict high tissue density, two
analytical means of cluster separation were investigated. First, clusters are analytically described
by a line or plane of best fit and the resulting median plane between them is calculated. Second,
based on the iso-propability ellipsoids a tangent line or plane is determined which identifies the
iso-propability ellipsoids of the two clusters that are just touching. It is worth noting that the
lengths of the half axes of the ellipsoids are calculated using the frequency histograms of the data
points in these cluster plots along each ellipsoid axis.

2D - Histogram Inward Distribution 2D - Histogram Inward Distributian

Figure 5. Two-dimensional cluster plots of a) #; versus 7, and b) ¢, versus  resulting from thickness and transfer
corrected spectra of high and low tissue density. Only training data set shown (n = 1704). Blue circles, spectra from
tissue classified as low density; red circles, spectra from tissue classified as high density. Median axis (green) and
new tangent axis (black) are shown.

Figure 6left). Three-dimensional cluster plot of #;,versus #; and ¢, resulting from thickness and transfer corrected spectra of high
and low tissue density. Only training data set shown (n = 1706). Dark points, data from low density tissue; light points, spectra
from high density tissue . New tangent plane (vertical) and median plane (horizontal) are shown. Figure 6 right) shows the
resulting ellipsoids indicating isopropability lines and only the tangent plane of separation .




Furthermore, it should be noted that the density cluster of the low tissue density group is
significantly larger than that of the high tissue density group. Figure 6 shows an example of a 3D
plot with the respective median plane and the tangent plane indicated.

We calculated a high density measure (HDM) and a low density measure (LDM), defined as the
number of tissue volumes correctly identified as either high or low tissue density, respectively by
OTS divided by the total number of tissue volumes identified as either high or low tissue density,
respectively by the radiologist. Hence, HDM represents sensitivity and LDM specificity for the
detection of breast tissue with high tissue density. Table 4 presents the HDM and the LDM based
on the two cluster separation schemes for PCA trained on measurements from ‘All Positions’.
The fact that LDM is lower than the HDM can be attributed to the fact that low tissue density is
defined as ‘less than 25% of the mammographic area is covered by densities’, thus an individual
spectrum from one quadrant can also be representative of high tissue density at this position.

Table 4. HDM and LDM for training and validation sets using all component scores or scores for individual
positions as derived from 3D cluster plots. HDM and LDM results using either the median plane or the tangent plane
are presented.

Tangent Plane Median Plane
Component Training set Validation Set Training set Validation Set
Scores(xy,z)l| HDM LDM  HDM _LDM | HDM LDM HDM LDM

All Positions Ihts Uy 88.3 85.8 98.6 88.9 68.3 63.0 76.4 78.9

Center 1,t5 1 96.7 84.4 94.4 923 71.7 55.6 83.3 36.5
Medial 1,83 90.0 85.0 94.4 923 20.0 56.3 88.9 53.9
Distal 1Lt 13 96.7 85.0 100.0 94.2 85.0 88.1 77.8 90.4
Lateral Lt by 96.7 94.4 100.0 923 91.7 73.8 100.0 90.4

It should be stressed that by using the tangent plane very high HDM and LDM can be achieved
without any stratification. Additionally, while the spectroscopic technique is sensitive only to
average volumetric properties, the volumes sampled per spectra are less than 25% of the breast
tissue, whereas the parenchymal density is a global measure. Hence, averaging the scores from
all 8 spectra collected per volunteer was tested for possible improvement of the HDM and LDM.
Results based on the median plane of separation for 2 different representations of the 3D data are
presented in table 5, indicating an improvement in each case. Figure 7 shows the improvement in
graphical form.

Table 5. HDM and LDM for test and validation sets using either scores from all 8 spectra per volunteer or the mean
score per individual. '

. Training Set Validation Set
Equation Used

HDM LDM HDM LDM
tf(t,t,) 76.9% 88.3% 75.0% 96.7%

All scores Tes
L,1(t,t,) 69.4% 87.5% 64.3% 92.5%
LI(t,1) 85.0% 89.1% 85.7% .100.0%

Mean scores S
LIt 85.0% 82.6% 71.4% 93.3%

Thus, we have established that OTS is a valid physical assessment technique for tissue densities.
As the HDM and the LDM are close to 0.9 OTS will provide a similar odds ratio toward breast




cancer risk as parenchymal density pattern. This is achieved without stratification of the
volunteer population based on the above mentioned demographic risk factors, which are often
employed in risk models such as the Gail Risk Model [3]. Additionally, the effects of hormonal
variations resulting from the menstrual cycle on the transillumination spectra were not
considered. For a more detailed statistical analysis based on n=156 volunteers please see
Appendix 3, a paper submitted to Cancer Research for peer review July 21 2003.

\
2.
-

Effects of menstrual cycle

Figure 7.  Three-
dimensional  cluster
plots of a) ¢, , versus
tiand £; (n = 528) and

b) £, versus f;and

;_;(n = 88). Shown

are scores from spectra
of high (solid symbols)
and low (open
symbols) dense tissues
after thickness and
transfer function
correction.

Changes in the PCA scores measured in 20 women resulting from transillumination spectra
collected 4 times during a menstrual cycle are displayed for the left centre position in figure 8.
Plots of the other measurement positions showed similar results. From this we concluded that
timing of OTS in pre-menopausal women and women on HRT to a certain period during the
menstrual cycle is not required.

Scores of t,

0.5 1

-0.5 4

-33 -31 -29

-27 -25 -23
Scores of t;

& Low Week 1 MLow Week 2 ALow Week 3

© High Week 1 fIHigh Week 2 A High Week 3

-21

Figure 8. Scores for ¢,
versus #; for n=20 women
presenting 4 times during a
menstrual cycle. Shown are
results for the left center
measurement position only.
Low and high refer to low
and high tissue density,
respectively. Using a PCA
model trained on n=88
volunteers.
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Effects of age

It was previously shown [5] that transillumination spectra collected from breast tissue will
change as a function of age due to the atrophy of glandular tissue prior, during and post
menopause. On a subgroup of n=88 volunteers we analysed the PCA scores as function of age
following age independent training of the PCA components. Figure 9 shows the results for the
individual means of the first 2 component scores for high and low tissue densities. While
component score 1 shows a slight increase with age for low and high tissue densities, component
score 2 appears to be independent of age. The first result is anticipated, the 2" somewhat
surprising.

As shown below under work performed related to Task 3, component score 1 is thought to be
inversely related to the overall light scattering in breast tissue, and atrophy during menopause
will replace highly light scattering glandular tissue with less scattering adipose tissue. The fact
that the slope for high tissue density is steeper than that for low tissue density is also anticipated
as more glandular tissue can undergo atrophy. Principle component 2 shows an inverse lipid
(positive) and water absorption (negative) peak (see figure 4), and thus it is anticipated that
replacement of glandular by adipose tissue should result in a positive slope specifically around
age 50 when atrophy is fastest. It should be noted that specifically for high tissue densities the
regression analysis for the age dependence of the component scores resulted in low correlation
coefficients and thus the dependency results should not be over interpreted.
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Figure 9. Scatter plots of averaged component scores; left ¢; and right ;z—per individual as a function of age for

high and low density categories (n = 88). Open circles and solid regression line represent low tissue density, closed
circles and dashed line represent high tissue density.

To further investigate if stratification of the volunteers based on age is warranted, we trained
PCA models independently for volunteers younger than 50 years of age and older than 55. The
results showed that the derived principle components are comparable between the two age ranges
in shape and magnitude, with the exception that the water contribution in principle component 2
and the lipid contribution in principle component 3 are lower for the less than 50 year old
women. A Kruscal-Wallis analysis of the component scores between the two groups revealed no
statistically significant differences with the exception of effects of Body Mass Index (BMI)

11




Similarly we investigated if the PCA derived component scores showed a correlation with BMI
and the results are displayed in figure 10 below. Here, as anticipated, correlations for the first 2
principle components are identified for both density classes, with apparently reduced light
scattering for women with higher body mass index by #, and increased lipid content in the breast
tissue by #,. These results can be seen as additional evidence towards the interpretation of the
principle component spectra.
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Figure 10. Scatter plots of averaged component scores a) t_; and b) ;; per individual as a function of BMI for high

and low density categories (n = 88). Open circles and solid regression line represent low tissue density; closed
circles and dashed line represent high tissue density.

Effects of measurement position

A multivariate analysis of the PCA results showed significant differences in the component
scores between the 4 interrogated quadrants. Figure 11 shows the mean and standard deviation
of the first three component scores ¢ as a function of the measurement position for high and low
tissue density. Subsequently, the PCA analysis was executed for each individual position. While
the resulting component vectors were similar, see appendix 3 for more details, the HDM and
LDM significantly improved (see Table 4). The HDM and LDM in the validation sets are all
>0.92 further improving the density prediction value of OTS. From figure xxx it also becomes
apparent that the scores for the low tissue densities cluster tighter than those for the high tissue
densities, possibly indicating that different anatomical structures contribute to the appearance of
parenchymal density pattern.
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Pooling of results by quadrants.

As previously indicated, OTS samples the optical behaviour of the breast tissue volumetrically.
Hence each OTS spectrum by itself, under samples the breast, thus possibly providing a wrong
assessment relative to the density classification, which is inherently a global tissue attribute.
Figure 12 shows a frequency histogram indicating the number of spectra per individual
predicting a density, here high or low. If the requirement is that 3 of the 4 spectra collected in the
center and distal positions on the bilateral organ must predict high density to assign high density
globally, the HDM and LDM is > 0.97. The predictive values achieved for a similar condition
using the lateral and medial positions are lower. The fact that the combination comprised of the
center and distal positions carries a higher predictive value is not surprising since both quadrants
exhibit densities less likely seen in the other two quadrants, previously also shown by Wolfe et
al. [5, 6].
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Figure 12. Frequency histogram of the number of spectra from left) the center and distal positions and right) the
medial and lateral positions, that correctly predicted high tissue density. High tissue density is shown in black and
low tissue density is shown in grey. Results are based on n=88 volunteers.
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Task 3. Derivation of tissue chromophore concentrations and light scattering properties of the
breast tissue. (4-34 months). Related to specific aim 2.

e Setting up of PLS analysis to extract tissue chromophores from transillumination spectra by
creating a look up table for light transmission as a function of tissue optical properties (4-6
months).

* Total of 60 subjects will contribute to the frequency domain spectroscopy database to derive
the light scattering properties as a function of the hormonal status (6-18 months).

* Determination of chromophore concentrations for all collected spectra of the subjects (12-36
months).

* Establishing initial model identifying chromophore concentration ranges/ratios, which show
possible correlation with tissue density (20 months and 28 months).

To execute the correlation between the mammographic based tissue density on an interval scale
and OTS, training of the research staff in a computer assisted analysis program (Cumulus),
developed by the group of Dr. Yaffe [7], was required. Only recently have we achieved a
‘Cumulus’ training level deemed sufficient for implementation of the PLS analysis. The training
level required includes that persons executing the % density assessment from mammograms
achieve a >0.85 correlation for repeat assessments of the same mammograms. An additional
complication that occurred was that the breast imaging center used for patient recruitment
switched last year to exclusive use of digital mammograms and the computer assisted program
does not have the data file filters for the .dicom file format used in digital mammography. We
are cutrently waiting on our collaborator
Dr. Yaffe to complete these filters (ETA
August 2003). Some results are shown
below to demonstrate the ability of OTS
to predict tissue density also on a nominal
scale. To date the data correlation is not
entirely satisfying as the repeat correlation
for the staff extracting the % density from
mammograms was only ~ 0.8, thus
limiting the accuracy of the PLS training.
Figure 13 shows an example of a PLS
derived prediction of the tissue densities
for a person achieving a correlation
coefficient ~0.8 versus one achieving only
a correlation coefficient of 0.72, indicating
the need for accurate and repeatable use of
the ‘Cumulus’ program.
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Figure 13. Partial Least Squares Regression
Actual vs. Predicted Plots for top) fair trained
reader and bottom) poorly trained reader. Solid
symbols are for data points from the training set
and open symbols for those from the validation set.
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From figure 13 it becomes evident that the correlation for density predicted based on OTS versus
that measured by mammography is mostly limited by the accuracy of the latter. Principle
component regression was investigated as an alternative to PLS but did not result in an
improvement of the correlation between densities by OTS versus mammography. New PLS
results will become available only in mid August. We will also attempt to use the Gail Score, a
demographics based risk predictor, as the standard for OTS analysis. Comparing the component
vector between a physical property based standard and a demographics based standard may
provide interesting information about common elements between the two.

The frequency domain system assembled comprised three emission wavelengths (785, 808 and
905 nm) operated at 150MHz and a heterodyne detection at 150.0002 MHz. The basic setup is
described by Patterson etal. [8, 9]. A total of 15 women were recruited for the frequency domain
measurements. (Recruitment fell short due to the outbreak of SARS in Toronto, and as some of
the equipment components were only on loan, it is difficult to reactivate these experiments now
as the SARS situation has improved). The phase shift was shown to be associated with the
differential pathlength factor [10], which in turn represents the scattering power of the tissue. To
determine the phase shift due to the tissue versus the phase shift due to the optical path and the
electronic components, measurements in distilled water were collected with the same interoptode
distance and that phase shift subtracted from the one measured within the tissue.

Our hypothesis was that the principle component 1 from the PCA analysis above represents light
losses due to increased pathlength and losses at the tissue boundary. Figure 14 shows a plot of
the phase shift at three wavelengths (785, 808 and 905 nm) versus component scores #; and #; for
this subgroup of women. As can be seen there is a correlation between the phase shift versus PC1
but only little as function of PC2. Additionally, high phase shift and low #; are indicative of an
increased optical pathlength thus the correlation is as expected. It is surprising that the density
groups do not cluster separately in the top row of graphs, that is that the optical pathlength does
not depend on the radiologically derived density groups. This indicates that photon scattering by
itself does not differentiate between density groups using visible and NIR radiation, whereas
Compton scattering of x-rays contributes to the majority of the contrast for risk assessment based
on parenchymal density pattern. This in turn indicates that OTS holds also complimentary
information to ionizing radiation based risk assessment.

A different way of looking at these results is through the calculation of the differential pathlength
factor (DPF) against propagation of the photon density waves as a function of tissue density and
wavelength. It is noteworthy that the DPF is a function of the scattering and attenuation
coefficient and both are changing as a function of wavelength and tissue density classification.
Figure 15 shows similar results to figure 14 using DPF as a function of component scores #; and
t,. For the measured population the averages as a function of wavelength are shown. Considering
that at 908 nm the influence of the density determining chromophore lipid is low, with possibly a
minor effect of oxyhemoglobin, see figure 4, the noted difference in DPF for the medium and
high parechnymal tissue density groups must be attributed to an increase in scattering. Accepting
this line of reasoning, the fact that at 808nm no difference in DPF is noted, indicates that a strong
increase in total hemoglobin absorption (805 nm is the isobestic point for oxy and de-oxy
hemoglobin) is present for the medium and high tissue density classes. Similar reasoning leads to
a preferential increase in oxyhemoglobin and thus higher oxygen saturation as the scattering
increase is less offset at 785 nm where deoxyhemoglobin is the stronger heme based absorber.
Figure 17 shows the change in DPF as a function of wavelength in a group of representative
individuals of the three tissue density classes. It is unclear at this time if the individual DPF
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measurements can be exploited for risk assessment similar to OTS opening a 2™ technological

avenue for optical breast cancer risk assessment.
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*  Determination of chromophore concentrations for all collected spectra of the subjects
(12-36 months)

The program used to determine the tissue chromophore concentrations is based on the diffusion
theory as an approximate solution to the transport equation with mismatched boundary
conditions (e.g. change in refractive index) to correlate the fluence ¢(d) = IL(r,§)dw asa

LY 3
function of distance, d, from the light source, Beer’s Law for attenuation of light

1/1, = e where I can be determined based on diffusion theory, and the fact that several

known chromophores contribute to the attenuation coefficient p,according to z, = ZC,. H,, and
i=1
all are a function of wavelength. In order to model the wavelength dependent light scattering the
function g =al™ according to Pogue et. al. [11] is employed. To simplify the entire equation
set we elected to set the fluence beyond the boundary to zero, which was experimentally realized
by black absorbing surfaces around the source and detectors. Ultimately, one derives an equation
4 ~Hord

142,/ ps

system containing ¢(d) = with 2, = \/3 M, -(p, + p) and the radiance into two
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. . =2
hemispheres given by F,.(d)=e¢ ™’ and F. (d)=gq'e™" where qg = Ko = “H4

4 . To solve
Hoj + 244

this equation system the Nelder-Mead Simplex Method a multidimensional minimization

procedure is used within MatLab, considering oxyhaemoglobin, de-oxyhaemoglobin, lipid,

water and melanin to date. Figure 18 provides 3 examples of fitting between the experimental

and the theoretical spectrum, including the concentrations of the detected chromophores. It is

noteworthy that the haemoglobin absorption peak at ~750 nm in only poorly captured and the

overall haemoglobin content of the tissue is estimated too low. We are currently re-examining

the code we wrote in order to identify a possible bug.

Patient Spactrum va Bust-Fit Model

Figure 18. Examples of the decomposition of the optical transillumination spectra into chromophore concentrations.
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The corresponding chromophore concentrations are given respectively in Table 6 below.

Table 6. Chromophore concentrations and scattering power of preliminary spectral

deconvolution.

Patient 449025865 224903682 802723643
Position LC LC LC
Water % 67.6 46.1 48.7
Lipids % 32.37 38.08 26.9
Hemoglobin mol/L 1.89 e-10 1.017 e-12 1.351 e-12
Oxy-Hemoglobin mol/L 2.78 e-5 3.75 e-5 8.634 e-5
Melanin mol/L 0.000159 0. 000178 0.00047
Seattering em-1 $900 8760 4790
amplitude

Scattering Power . 1.081 1.047 1.0193
error value 2.4956 3.1444 3.046

1000

*  Establishing initial model identifying chromophore concentration ranges/ratios which
show possible correlation with tissue density (20 months and 28 months).

As discussed above we are still in a debugging mode related to the program to be used and
this task is still pending.
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Pending data analysis (anticipated completion 1-6 Q4 2003, 7, 8 Q1 2005)

The following is a list of planned analyses of the present data set, including some of the pending

tasks proposed during the initial funding period and some extending beyond those proposed.

1.

o

PCA of OTS versus tissue density based on the classification of each quadrant.

2. PLS of OTS versus % tissue density based on each quadrant.
3. PLS of OTS versus risk score based on Gail Model (n=162).
4,
5

. PLS of tissue chromophore extraction versus tissue density based on the classification of

Tissue chromophore extractions from OTS.

each quadrant.
PLS for same data as point 5 but versus % tissue density based on each quadrant.
Detailed analysis of outliers from analyses 1 to 6.

Analysis if wavelength dependent DFP provides diagnostic risk assessment.

Key Research Accomplishments

Demonstrated the feasibility of OTS as a method to determine breast cancer risk.

Establishment of analysis methods resulting in a sensitivity and specificity to identify
women with high versus low tissue density, larger than 0.97 each.

Through the establishment of defacto equivalence between OTS and mammographic
density pattern, OTS will provide at least the same odds ratio or relative risk as tissue
density in identifying women with high breast cancer risk.

Demonstration that OTS can provide anatomical and physiological information about the
breast at risk, by providing tissue density and tissue chromophore information.

Reportable Outcomes

Manuscripts submitted for peer review (two attached)

Non Ionizing Near Infrared Radiation Transillumination Spectroscopy for Breast Tissue Density
and Breast Cancer Risk Assessment, by Michelle K. Simick, Roberta Jong, Brian C. Wilson and
Lothar Lilge, submitted to Journal of Biomedical Optics, May 2003.

Classification of breast tissue density by Optical Transillumination Spectroscopy: optical and
physiological effects governing predictive value, by Kristina Blyschak, Michelle Simick,
Roberta Jong and Lothar Lilge, submitted to Cancer Research, July 2003.

Manuscripts in preparation for peer review

1.

Manuscript detailing the analysis based on density given on an interval scale.
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2. Manuscript detailing the extraction of the chromophore concentrations.
3. Manuscript comparing analysis on an interval scale for a physical risk standard (density)
versus a demographics based standard (Gail Score).

M.Sc. Thesis

Near Infrared Transillumination Spectroscopy of Breast Tissue for Correlation with
Mammographic Density, by Michelle K. Simick. A thesis submitted in conformity with the
requirements for the degree of the Masters of Science, Graduate Department of Medical
Biophysics, University of Toronto, September 2002.

Presentations invited

Optical Transillumination Spectroscopy of Breast Tissue: Correlation to Parenchymal Density
Patterns and Cancer Risk, Lothar Lilge, Wellman Laboratories of Photomedicine, MGH, Boston,
USA, November 2001.

Optical Transillumination Spectroscopy of Breast Tissue: Non-Imaging pre-screening for women
of all ages, Lothar Lilge, Institute for Laser Medicine, Ulm, Germany, December 2002.

Optical Transillumination Spectroscopy, better prescreening of women? Lothar Lil ge, Kristina
Blyschak, Breast Club, Princess Margaret Hospital, February 2003.

Colours tell thy risk! Can spectroscopy be used in preventive oncology? Lothar Lilge, Kristina
Blyschak, Michelle Simick, Roberta Jong, Brian C. Wilson, Engineering Conferences
International, Banff, Canada, 3-7 August 2003.

Presentations contributions

Transillumination Spectroscopy for Breast Cancer Risk Assessment, Michelle Simick, Roberta
Jong, Brian C. Wilson, Lothar Lilge, Photonics North, Rochester NY 2001. (This presentation
won the best student presentation price).

Classification of breast tissue density by Optical Transillumination Spectroscopy (OTS): optical
and physiological effects governing predictive value, Kristina Blyschak, Michelle Simick,
Roberta Jong, Lothar Lilge, Optical Society of America, Photonics North, Montreal, Canada,
May 2003. '

Optical Transillumination Spectroscopy of Breast Tissue for Cancer Risk Assessment, Lothar
Lilge, Kristina Blyschak, Michelle Simick, Roberta Jong, Proceedings of the Society of Opto-
electronic Systems Engineers, San Jose, USA, January 2003.

Optical Transillumination Spectroscopy a possible technique to assess Breast Cancer Risk?
Michelle Simick, Kristina Blyschak, Roberta Jong , Norman Boyd, Brian C. Wilson and Lothar
Lilge, Proceedings of the Society of Opto-electronic Systems Engineers, Volume 5141, Munich,
Germany, June 2003.
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Patent

* US provisional patent submitted November 20, 2001. Title Optical Transillumination

Spectroscopy to quantify disease risk. Inventors Lothar Lilge, Brian C. Wilson, Michelle
Simick and Norman Boyd.

Full US application submitted November 2002.

PCT international Patent Application No. PCT/CA02/01771 files November 20, 2002,
with a publication data May 30, 2003.

Programs and databases

A MatLab based program for PCA, PLS and chromophore analysis based on the
transillumination spectra was established, the key points are:
* Online sorting of subgroups from volunteer population
¢ Calculation of 3D iso-probability ellipsoids for clusters under
investigation
* Optimized quantification of HDM and LDM by establishing the tangent
plane between ellipsoids.
The figures below show some screen prints of the GUI with the main analysis selections and the
screen for the subgroups selection using the PCA interface as an example.
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The current data base of the volunteers in our study comprises 8 spectra (or more for repeat
measures), the complete information according to the original questionnaire and additionally, for
about 160 volunteers, we conducted a phone back to obtain additional demographic information.

Conclusions

This study demonstrates for the first time that tissue modifications preceding the development of
cancer can be detected and possibly quantified. While some of these modifications do not need to
have a causal relationship with the cancer, the ability to quantify tissue constituents, such as the
chromophores mentioned above, may provide additional information for oncologists interested in
oncogenesis and prevention.
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Optical spectroscopy shows at least the same predictive value as ionizing radiation, but is
applicable to women at a younger age and more frequently. Hence, when employed in preventive
oncology it offers women two distinct advantages. First, by permitting its use at an earlier age
than currently available through mammography, any prevention strategy has more time to exert
its influence and thus strategies with fewer negative effects on the quality of life can be explored.
Secondly, by permitting frequent use, the efficacy of the intervention strategy can be monitored.

In either case women are empowered to make more educated decisions regarding the risks and
benefits of the intervention strategy.

Planned studies.

The current work was very successful in identifying possible new factors or traits for risk
assessment using tissue density as an intermediate outcome.

The programs future work is aimed at establishing OTS’ odds ratio or relative risk directly
versus breast cancer and to demonstrate its ability to monitor risk changes in individual women
undergoing a risk reduction intervention. Applications to these two points have been submitted to
the NIH (June 2003) and the CDMRP (March 2003), respectively. Another application to the
Susan Komen Foundation is planned for September 2003.

Once the three different groups of risk factors or traits are obtained (for risk, density and possibly
protection) the risk factors themselves can be compared and insight can be gained as to the
physical contributions of density to risk, or density to protection etc.

In future work expanding OTS for non-oncological risk assessment is also considered.
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Abstract

There is increasing attention on cancer prevention as a mean to reduce cancer
incidence rates. The prevention interventions or therapies in turn rely on risk assessment
programs to identify those women most likely to benefit from education and lifestyle
changes. These programs are usually based either on interviews to identify ethnic, genetic
and lifestyle factors contributing to risk or on physical examination of the breast. For the
latter it has been shown that the parenchymal density pattern observed on x-ray
mammography can be used to assess an individual’s risk. Extensive areas of dense,
glandular tissue that are relatively radio-opaque are associated with higher breast cancer
risk, with an odds ratio of 4 - 6 when compared to women in whom the breast density is
low due to an abundance of adipose tissue

Near-infrared optical transillumination spectroscopy has been used previously to
investigate physiological properties of the breast tissue. In this study, women were
recruited who recently had X-ray mammography. The tissue density was assessed by a
radiologist. They then underwent optical transillumination spectroscopy, for which an
instrument was developed that delivered visible and near-infrared light to the breast.
After being transmitted through the breast craniocaudally in one of 4 quadrants the light
spectrum from 625 to 1050 nm was measured. The spectra were used as input to Principal
Component Analysis (PCA) that used the corresponding mammographic density as the
reference standard. The study group comprised 92 women age 39 to 72 years. Without
further stratification for age, menopausal status or measurement position the PCA
numerical model predicted the radiological assessment of tissue density in the mid 80%

to low 90%.




Introduction

Breast cancer is the most commonly occurring cancer in women. In Canada, the
lifetime risk of being diagnosed with breast cancer is approximately 1 in 10,' the highest
out of all cancers for women. The probability of dying of breast cancer is 1 in 25, which
is second only to lung cancer amongst all cancer-related deaths.! Most other developed
countries are reporting similar probabilities for diagnosis and death. Breast cancer
screening programs have been shown to decrease the mortality rates of women between
ages 50-69, ? since cancers are detected at an earlier, easier curable stage. Conversely,
the overall incidence rate of breast cancer is still rising, possibly due to the increasing age
of the population.® Currently, imaging by x-ray mammography, ultrasound and or
magnetic resonance imaging are the primary modalities ¢ used for breast imaging. These
modalities use physical or chemical differences in tissue such as the radiation attenuation
coefficient, water content or physical density to display differences in the tissue
morphology, which may suggest aberrant growth associated with cancer.

While the understanding of the mechanisms leading to breast cancer is increasing,
they are not fully understood, though it is apparent that the development of breast cancer
is a slow process following initial transformation of the breast tissue.” There is currently
an effort within the research community to understand risk factors for the disease that are
exhibited before or during this slow transformation process, but definitely prior to the any
clinical manifestation of breast Cancer. This would enable members of the highest risk
population to form educated decisions towards increased screening and or risk reduction
interventions. Risk factors are defined as those characteristics that are more common in

people with the disease when compared to the population at large.® Risk factors related




to breast cancer include age, country of residence, first degree relatives or personal breast
disease history, genetic factors, anthropometric factors, menstrual and physiological
factors.

Screening and risk reduction intervention will not provide benefit to the
individual member of the high risk population but are rather of benefit of the entire
population at risk. This benefit is maximized when the relative risk quantifier employed
is very large, so that the majority of high risk group members are identified while
minimizing the inclusion and hence exposure of low or medium risk subject_s to potential
side effects of the risk reduction interventions. Risk reduction interventions can be as
benign as modifications to a subject’s lifestyle, exercise and diet, which has been shown

7 or invasive such

to reduce the relative area of mammographic densities after two years,
as chemoprevention, including the use of Tamoxifen ®, aromatases ° and prophylactic
mastectomy 10

Increased fibroglandular tissue in the breast which has a high x-ray attenuation
coefficient , thus appearing bright in standard mammograms, is a known physiological
risk factor. Areas appearing radiologically lucent represent fatty tissue of the breast that
are rarely the source of aberrant growth in the breast. Radiological opaque tissue is a
common source of carcinomas and consequently the relative area of dense tissue is a
strong risk factor, see Figure 1 for examples of high and low x-ray dense breast.
Commonly breast tissue density is quantified following breast cancer screening program
visits and it has been suggested that it can be affected by hormonal and dietary changes

" Parenchymal density is used as the standard risk assessment tool '? in the study



presented here, as it provides the best available standard for risk in a cross sectional
study.

Breast tissue is a highly light scattering medium and has relatively low absorption
in the red and near infrared wavelength range, resulting in an adequate penetration depth
of light. This allows a sufficient number of photons to be detected through up to 7 cm of
breast tissue in a few seconds, while maintaining the incidence irradiance below
government guidelines for exposure of skin.'

In previous diagnostic studies of breast tissue it has been shown that
quantification of water, lipids, hemoglobin and other tissue chromophores is feasible by
near-infrared spectroscopy,'* F ibroglandular tissue is expected to result in increased
water and simultaneous decreased lipid-associated absorption, identifiable through
absorption peaks at 978 and 930 nm, respectively,' (Figure 2). Itis also expected to have
a higher scattering efficiency than adipose tissue as seen in Figure 3. Finally,
Haemoglobin (Hb) can be identified by an absorption peak at 760 nm while oxygenated
haemoglobin (HbO,) has only a low and broad absorption with a local maximum close to
920 nm."” Transillumination spectroscopy have been shown to be associated with the
probability for the presence of breast cancer.'®

Light remitted from the opposite side of the breast passes at least twice through
the skin with varying melanin content (depending on ethnicity and sun exposure) which
can affect the transmission spectrum, and hence may limit the predictive value of
transillumination spectra as the melanin content does not affect breast cancer risk. While

quantification of skin color is feasible based on diffuse reflectance spectroscopy 17 and




can permit subtraction of melanin associated absorption, it is not included in this study,
and participants where not stratified for skin color or ethnic background.

Optical transillumination spectroscopy is not an imaging technique and thus only
bulk tissue properties are obtainable and are characterized through spectral shape and
intensity analysis. Hence, for comparison with mammographic determined risk, the x-ray
images were classified only as low, medium or high tissue density, omitting spatial
information about the density pattern.

This investigation is set up as a cross-sectional study to evaluate the feasibility of
detecting and quantifying breast tissue density as intermediate to risk prediction in vivo
using visible and near infrared transillumination spectroscopy. The hypothesis is that
optical transillumination spectroscopy provides consistent information to conventional
mammography in quantifying breast tissue density and hence, indirectly to breast cancer

risk with an odds ration compatible to mammography .

Methods

Instrumentation. The clinical spectrographic system, designed and built in-house, is
shown in as schematic in Figure 4. A 12 Watt halogen lamp (Welch Allyn, Buffalo, NY),
with a stabilized power supply was used as the broadband light source. The ultraviolet,
short-visible and mid-infrared regions of the spectrum were blocked by a cut-off filter
(<550 nm) and a heat rejection filter (KG4, Melles Griot, Carlsbad, CA), respectively.
The remaining light in the 550-1300nm range was coupled by a 20mm focal length lens
into a 5 mm diameter liquid light guide (Kaiser Electronics, San Jose, CA), placed in
contact with the top of the breast. The total radiant power delivered to the skin surface

was >250 mW. The transmitted light was collected by a custom-made 7 mm diameter




optical fiber bundle (P&P Optical Kitchener, ON, Canada) that was positioned coaxially
with the source guide. The light guides were mounted in a caliper, the separation of
which could be adjusted by hand so that both were in contact with the breast. Contact of
the source guide was firm, with the breast compressed locally by not more than 5 mm to
ensure good coupling to the tissue. The holder for the source guide and the plate in
which the detector guide was embedded were made of black plastic to model matched
boundary conditions. During spectral measurements, the subject was seated and each
breast in turn resting comfortably on a support plate, the height of which could be
manually adjusted. No pretreatment of the skin surface was required.

The collected light was spectrally dispersed using a high-throughput holographic
grating (15.7 lines/mm:, Kaiser, Carlsbad, CA, USA) with a 0.5 mm entrance slit and
detected with a 2D, liquid nitrogen-cooled back thin silicon CCD array (F-125,
Photometrics, NJ, USA). The spectral resolution was <3 nm (FWHM) over the 625-1060
nm bandwidth. The peak quantum efficiency of the detector was >0.8 at 780 nm, falling
to 0.2 at 1100 nm. The entrance slit of the spectrometer was imaged onto 50 rows of the
CCD thus increasing the dynamic range by over 25. The dark count was ~0.06 electrons
per hour. Further noise reduction was achieved using exposure times of 2-3 seconds and
averaging up to 5 scans. The system dynamic range was >5 OD (optical densities) with a
signal-to-noise ratio of >10-10* across the spectral range.

This study was approved under the Institutional Review Boards of the University
of Toronto and the University Health Network, with informed consent. Women were
recruited through the Marvelle Koffler Breast Centre at Mount Sinai Hospital, Toronto.

All had prior mammograms within 12 months of the spectral measurement, classified by




a radiologist (RJ) as either low (< 25%), medium (25-75%), or high (>75%) tissue
density. Women showing large variations between both sides of the bilateral organ were
not included in this analysis.

Measurement procedure and Spectral Preprocessing.

The total data acquisition time was approximately 15 minutes and was completed
in complete darkness. A total of 8 spectra were collected per subject, representing medial,
distal, lateral and central quadrants of each breast. To date a total of 92 women have been
entered in the study, of whom 58 are post-menopausal. The wavelength dependence of
the sensitivity was corrected daily by normalizing the transillumination spectra made
through a standard comprising of 1 cm thickness, ultra-high density polyurethane
(Gigahertz Optics, Munich, Germany) which has a very flat attenuation spectrum. All
tissue spectra are given as Optical Density (OD) relative to this standard. Further pre-
processing of spectra included correction for the tissue thickness, by calculating the
OD/cm at each wavelength. Auto-scaling of the spectra, i.e. normalizing the spectrum to
average spectrum off all spectra contained in the training set data for PCA model
development (see below), whereas spectra in the validation set were scaled using the
same mean spectra. Table 1 lists the different pre-processing techniques employed to
establish a correlation between the spectral data set and the breast tissue density.

Data analysis.

The radiological classification produces a scalar quantity, namely the
mammographic density, and the optical spectra is a vector. Hence, only multivariate
analysis techniques that are able to accept such parameters and that have been used

extensively for different applications requiring the analysis of complex spectra where




considered .'® 1° Typically, these methods involve first a ‘training’ step to identify the
variance within a set of spectra and subsequently, a ‘prediction’ or ‘validation’ step to
determine the accuracy of a separate set of spectra in predicting the outcome, which in
this case is the tissue density classification. The specific analytic technique used here is
Principal Component Analysis (PCA)

Mathematically, the PCA procedure is as follows. First, the spectral data is
reduced in extent, while preserving the maximum amount of variance.”’ This is
accomplished by solving for the covariance or correlation matrix of the data matrix
X(m x n) comprising all measured spectra (n = 544; training set only) and the spectral
range (m = 436 wavelengths), such that:

cov(X)= X" X 1)

n-1

PCA decomposes the data matrix X as the sum of the outer products of the scalars of t;

and vectors p; and a residual matrix E:

X=t,p |+ typa+ttspa+..+t;p,+E
or X=TP"+E ()

,where the elements of the t; (# x 1) vectors are the scores that contain information on
how the spectra relate to each other, and the p; vectors (m x 1) or components are the
eigenvectors of the covariance matrix that relate the selected variances to each other.

The scores (elements of t;) can be graphically plotted against one another to show

clustering of related spectra. The PCA algorithm was trained on a test set (n= 544) and




the same mathematical model, i.e. retaining the pi, was used to determine the scores t; on
the validation set comprising the remaining n,=192 spectra.

The statistical significance for the PCA prediction was established using the high
density measure (HDM), which is defined as the ratio of spectra predicting a woman as
having high mammographic density by the PCA algorithm compared to those categorized
as having high tissue density by the radiologist. Convérsely, the low density measure
(LDM) represents the ability to correctly identify those spectra that represent low tissue

density. Hence, the HDM and LDM are similar to sensitivity and specificity, respectively.

Results

The data set includes mammograms and spectral results from 92 subjects (age 36
to 72 years). Fifty-eight women were post menopausal, of whom 33 were classified as
having low, 18 medium and 7 high mammographic density. Of the 34 pre-menopausal 5,
18 and 11 were classified as having low, medium and high density, respectively. As seen
in Table 2. At present, this classification prevalence does not reflect the general
population distribution observed during the Canadian National Breast Screening Study 2!
but recruitment is ongoing.

Figure 5 shows a typical set of measurements, comprising 8 spectra from a single
subject. Spectra from corresponding quadrants on each breast are very similar, a fact used
by Egan and Doyle '°as a negative predictor for the presence of breast cancer.

While transillumination is a local measurement, nevertheless a large tissue
volume is interrogated at each position (estimated as 25 cm® for 5 cm breast thickness).

For positions close to the circumference of the breast boundary losses will affect the




overall intensity of the transmitted spectra and could influence the spectral shape thus
could limit the predictive value of the transillumination technique. Hence, repeat
measurements were made in one subject, starting at the center position and moving
towards the medial position and beyond towards the circumference of the breast. The
resulting transillumination spectra are shown in Figure 6, indicating that while the overall
intensity is reduced and hence the OD/cm, up to a distance of 1 cm from the
circumference of the breast the losses are wavelength independent and so do not effect
the analysis.

The reproducibility of the optical transillumination measurements was analyzed
by repeat procedures on one subject during repeat visits over a stretch of 18 month.
Figure 7 shows the correlation of the t; and t; scores from these repeat spectra.
Component scores (t; and t;) vary between quadrants but cluster tightly for a given
position indicating that the spectroscopy data are reproducible.

Figure 8 shows the principal components (p;) resulting from the PCA using n =
544 corrected spectra. The p;-p4 represents, respectively, 97.6, 1.2, 0.6 and 0.3 % of the
variance in the total data set, for a combined 99.8% of the variance. The cluster plot of
the scores for t; and t, are shown in Figure 9, illustrating discrimination of the breast
tissue density across a diagonal line in the t; vs. t; space. Figure 10 shows the
reconstruction of a randomly selected transillumination spectrum from according to the
variance captured only by p; and p;, as well as that captured by the first four components
in thickness corrected spectra. The reconstruction from all four components shows a good

representation.




Spectra that had not been corrected for thickness were used to determine the
effect of thickness on the shape of the component vectors p;-p4 (Figure 11) and the
resulting cluster plots of t; vs. t,, see Figure 12. The component spectra are very similar
to the thickness-corrected components, but the cluster plots of t; vs. t, shows
discrimination as a function of t, only. Similarly, component spectra and cluster plot
were obtained also for autoscaled and transfer function corrected spectra (data not
shown). The resulting HDM and LDM values for the diffe?ent spectral pre-processing
methods are shown in Table 2.

Symmetry across the same bilateral quadrants for each individual is shown in
Figure 13 for all scores of t; and t, derived from thickness corrected spectra, reflecting a

pool of women with homogenous densities across both breast.

Discussion
Bilateral symmetry in the spectra at corresponding quadrants (Figure 12) is expected in
our study population as it is a criterion to indicate absence of breast cancer according to
the previous studies by Egan and Dolan '®,
Autoscaling of the spectra prior to PCA modeling removes some spectral
information since the subtracted mean spectrum is wavelength dependent. As the
spectral features contributing to the discrimination between high and low breast density

or risk are unknown, losing spectral information is not advisable, even though no

significant loss in HDM and LDM was noted. Additionally, calculating component

spectra after auto scaling will not enable use of principal component filters in future work

as suggested elsewhere. %




Cluster plots (Figures 9) based on the scores t; and t, resulting from thickness
corrected spectra demonstrated that it is possible to differentiate between subjects having
low or high breast tissue densities.

While PCA models for both native and thickness corrected spectra enable
differentiation between high and low breast tissue densities, their t; vs. t, cluster plots
differ. One obvious explanation is the effect of the physical tissue thickness on the
overall variance within the spectral data set. In the model based on thickness corrected
data, p; can not differentiate between high and low density tissue. Additionally, the range
of t; values is smaller in the thickness corrected data as seen in Figure 9 when compared
to the non-thickness corrected data seen in Figure 12. This indicates that the thickness
values contribute to the magnitude of p; masking other contributions that could
differentiate between tissue densities, such as light scattering, and thus leaving only t; to
preserve information distinguishing between the two breast tissue density groups.
Principle component spectra one, (p;) based on the thickness corrected spectra is de facto
wavelength independent but includes losses due to optical path length (and therefore light
scattering) and losses at the circumference of the breast.

Pre-processing of the spectra, including thickness correction, is clinically relevant
since it is controllable and it has been shown that thickness will contribute non-uniformly
to the spectra due to the correlation between lower density and larger breasts.'?

When comparing the autoscaled versus non-autoscaled data, there were minimal
changes in the principal component spectra and minor differences in HDM and LDM
values, see and Table 2. Autoscaling as part of the pre-processing can degrade regions

with flat or extreme spectral variation.'” Here, degraded spectral features could include




regions of the spectrum with minimal wavelength dependence and hence, a first
derivative close to zero. For example, the hemoglobin inflection points are more
pronounced in the non-autoscaled data than in the autoscaled components. Conversely,
the spectral features of water and lipids are large compared to other structures in the
spectra, but are less pronounced after auto scaling. In this study, the only differences in
the model performance is in the training set using non-autoscaled spectra having about
2% higher scores for both HDM and LDM.

Principal components can reveal particular regions of the spectrum that represent
important physical properties or entities within the tissue that contribute to
differentiation. Component spectra p; and p; are the most important and cover the
highest amount of variance in the data set. While components 3 and 4 have similar or
inverse shape as component 2 they take less variance into account.

The derivation of OD used here, which is based on the wavelength dependent
transfer function calibration by a polyurethane block with high Mie scattering resulted in
the surprisingly flat spectral shape of the principle component spectra p;, as thus the
wavelength dependent Mie-scattering cancels when the ratio of the two spectra is taken.
Hence, p; carries optical scattering information despite not showing the typical A’
dependency, » and thus the inverse of t; represents the overall scattering power. Low
density tissue spectra have a reduced amount of scattering compared to high density
tissue, and, therefore, higher values of t; as seen in Figure 9. This relationship in
scattering properties is also seen in the scattering coefficient data by Peters ef al. ** and

Troy et al., .




Component vector p;, enables differentiation between low and high tissue
densities through its most important spectral features related to the lipid with inverse
water peaks present at 930 nm and 980 nm, respectively. Thus, when t; is positive, the
lipid associated attenuation is the dominant feature as anticipated for fatty or low density
tissue. Spectra from the high density tissue have negative t, and water absorption
becomes the dominant structure in the component spectrum. Graham et al. (1996) » also
observed this relationship between water and density values when using MRI to quantify
percent density. In their study the water content of the tissue was measured directly and
showed adequate correlation to percent tissue density (r = 0.79).

Contributions by hemoglobin to the spectral features of p;, are observed between
625 and 850 nm where the negative slope and inflection points of the hemoglobin curve
are apparent. Dense breast tissue has lower t, scores compared to the low density tissue,
indicating higher hemoglobin and water contributions. Conversely, p; shows a lipid
absorption peak, but water and hemoglobin absorption are absent hence, if used as a fhird
discriminator the overall content of fatty tissue is represented. The simultaneous
appearance of water and hemoglobin absorption in p, can be explained physiologically,
as tissues with higher water content and hence cellulér content, require improved vascular
supply and, thereby, increased blood volume. 26 Since positive t; scores are related to low
tissue density and positive t; scores are related to low tissue scatter, the cluster plot of t;
and t; can be divided into quadrants as shown in Figure 14, highlighting the relationship
between the spectral features and the known physical attributes of breast tissue.

While a cluster plots based on t; and t; does not allow good differentiation

between high and low density tissue, regions of the corresponding component spectra p;




and py show interesting effects such as for p; a red shifted lipid peak and a small blue
shifted water peak and p, shows influence from both forms of hemoglobin, with the same
slope but inverse inflection points to p,. The underlying physical or physiological effects
for these observations are unclear at this time. While the amplitudes and general shape of
the spectra are similar to p, the magnitude of the scores t; and t, are much smaller than

those of the first two components, and may represent only relative corrections for p2




Conclusions

In vivo optical transillumination spectroscopy is technically feasible and capable
of predicting breast tissue densities with good correlation to mammographic densities and
hence, has good potential to be developed into a preferred method of cancer risk
assessment, so the strength of a direct correlation with cancer risk needs to be proven in a
case-control study and possibly a longitudinal study to estimate the validity of the
correlation and hence predictive value for a longer period of time.

According to the results of the current study, it is anticipated that the odds ratio of
the transillumination measurements should be close to those of the parenchymal densities
seen on mammograms (i.e. between 4 and 6), since the PCA results show HDM and
LDM values close to or above 0.90.

Transillumination spectroscopy may offer a novel “first step” in the risk
assessment of healthy women regardless of age, menstrual cycle, ethnic background or
menopausal status as the data and analysis presented here was not subject to stratification
by either event.

Spectral features associated with tissue density prediction include water and
lipids, as well as spectral features related to hemoglobin absorption. The effect of light
scattering on measured spectra holds importance in the differentiation of breast tissue
density after correction of the data for physical breast tissue thickness.

HDM and LDM values close to or above 90 % are very promising at this stage to
distinguish between low and high density tissues as they are higher than other physical
examinations, such as ultrasound 2’ and magnetic resonance imaging,” reported to be

between 70-80 %.




Optical transillumination spectroscopy offers the potential of a real-time and cost-
effective method with the ability to classify tissue densities for breasts that are up to 7 cm
in thickness in the current instrument. Improvements in CCD technology, such as deep
depletion wells can increase the opto-electronic detection and thus will increase the
detection ability. An added advantage of transillumination spectroscopy over ultrasound
and MRI is the fact that results are derived from preset mathematical models and hence,
no additional trained personnel are required for image interpretation or assessment. This
reduces the overall cost to the healthcare system for this risk-assessment technique. The
compactness of the devices makes it highly mobile and ideal to serve remote areas or
developing countries. A painless procedure and the inherent safety of this method will
likely contribute to a higher compliance rate, thus possibly assisting in affecting overall
survival rates.

One notable limitation in this preliminary study was the number of study subjects,
which may have resulted in sub-optimal predicted values for HDM and LDM. Also, by
using cluster analysis in 3D or higher dimensions, other components such as py can be
included to improve classification of tissue density.

X-ray mammography uses ionizing radiation and is considered unacceptable as a
tool to assess breast density for women less than forty years of age and for frequent
measurement, whereas transillumination spectroscopy is safe for women of all ages. This
allows risk assessment to commence at a much younger age when the life style and diet
are perhaps easier to influence and this mild risk reduction interventions have one to two
decades more to effectively reduce the cancer risk, thus ultimately leading to reduced

incidence rates.




While optical transillumination spectroscopy may be a promising tool to monitor
the effectiveness of risk reduction interventions such as chemopreventive, dietary or
lifestyle changes aimed at the reduction of breast cancer risk, its ability to detect physical
changes over a period of time in the breast tissue of a given individual needs to be

demonstrated in a prospective longitudinal study.
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Figure Captions
Figure 1: Examples of x-ray based mammograms showing breasts with either a) high and

b) low tissue density. Note: different x-ray exposures were used for the two examples.

Figure 2: Absorption spectra of some major chromophores constituents in breast tissue,
including, on the left side water (grey) and lipid (black) and on the right side hemoglobin

(black) and oxygenated hemoglobin (grey) 5

Figure 3: Graph of the scattering coefficient (us’) of adipose (black) and fibrous (grey)

breast tissue in the wavelength range of interest. Adapted according to Troy et al. !

Figure 4: Set-up schematic of transmission measurement system, comprising of cw white
light source, optodes (liquid light guide and fiber bundle in the caliber mount, breast

support, spectrophotometer and CPU .

Figure 5: Typical spectra from a volunteer after correction for the spectral system transfer
function and tissue thickness. Note the good reproducibility between corresponding sides

of the bilateral organ.

Figure 6: Effect of boundary losses at the breast circumference. Attenuation spectra A:
form a volunteer at various distances from breast circumference (center position black,
medial position dark gray, 2 cm from circumference grey and 1 cm from circumference
light grey. B: Ratio of the same spectra over the average of all four spectra to exaggerate

spectral variance due to boundary losses.
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Figure 7: Repeatability of t; and t, in one volunteer at all 8 positions. The slope of the
regression line is 1.03 and 0.87, and the Pearson correlation coefficient is 0.72 amd 0.84

for t; and t, respectively.

Figure 8: Plot of component p, to p4 (black to light grey, respectively) from PCA using

tissue thickness and spectral transfer function corrected spectra.

Figure 9: Cluster plot of t; vs. t; resulting of PCA using thickness and system spectral
transfer function corrected spectra from volunteers with high (square) or low (thombus)
breast tissue density. Shown are only scores for the center measurements, with the

training spectra shown as closed and the validation spectra as open symbols.

Figure 10: Raw data spectrum (black) and reconstruction using either only the first two
components (light grey) or the first four components (grey) based on the principle

components shown in Figure 8.

Figure 11: Component spectra of p; to ps resulting from spectra only corrected for but

the system transfer function.

Figure 12: Cluster plot of t; vs. t; resulting of PCA using only system spectral transfer

function corrected spectra from volunteers with high (square) or low (thombus) breast
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tissue density. Shown are only scores for the center measurements, with the training

spectra shown as closed and the validation spectra as open symbols

Figure 13: Comparison of the a) t; and b) t; scores for the left and right Breasts in
volunteers with either high or low tissue density. Black diamonds represent volunteers
from the training set; grey squares represent those from the validation set. Slope and
Pearson correlation coefficient are 0.94 and 0.76 for t; and 1 and 0.83 for ¢t,,

respectively.

Figure 16: Cluster plot of thickness and spectral system transfer function corrected data
of high (square) and low (thombus) tissue density volunteers. The 4 quadrant indicate

common optical and anatomical tissue properties.
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Table 1: Distribution of recruited volunteers and population proportions, from the

National Breast Screening Study (ages 40-59).”'

Pre menopausal Post menopausal ‘ Study Population
Density Training | Validation Training | Validation  Total | Prop ortion | Proportion
Total Total (%) (%)
Category Set Set Set Set ;
Low 4 1 5 25 8 33 . 38 41 37
Medium 13 5 18 13 5 18 . 36 39 49
High 8 3 11 5 2 7 18 20 14
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Table 2: HDM and LDM of Principal Component Analysis results for test and validation

set measurements.

Data pre-processing Test set Validation Set
HDM LDM HDM LDM
Transfer fqnctlon corrected 84.6 % 97.0% 87.5% 90.3 %
(Figure 12)
Thickness and transfer function
corrected 88.4% 93.1% 925% 88.8 %
(Figure 9)
Autoscaled — transfer function 85.6 % 94.4% 90.0 % 86.1 %
corrected (data not shown)
Autoscaled — thickness and
transfer function corrected (data 86.5% 91.8% 92.5% 90.3 %

not shown)
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Appendix 2

Optical Transillumination Spectroscopy of Breast Tissue for Cancer
Risk Assessment.

Lothar Lilgel’z, Kristina Blyschakl, Michelle Simick®, Roberta Jong4,

'Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2M09;
2Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada M5G 2M9
*Toronto-Sunnybrook Regional Cancer Centre, Toronto, Ontario, Canada M4N 3M5;
*Sunnybrook and Women’s College Health Science Centre, Toronto, Ontario, Canada M4N 3M5;

ABSTRACT

Breast cancer is the most commonly occurring cancer in women. The lifetime risk of being diagnosed with breast cancer
is approximately 1 in 10 thereby the highest out of all cancers. Breast cancer screening programs have been shown to
decrease the mortality rates of women between ages 50-69, since cancers are detected at an earlier, more favourable
stage. It is apparent that the development of breast cancer is a slow process following initial transformation of the breast
tissue. Hence, there has been a strong effort within the research community to understand risk factors for the disease.
Risk factors are defined as those characteristics that are more common in people with the disease when compared to the
normal population. Quantification of an individual’s breast cancer risk may lead that individual to modify her lifestyle
and/or diet. Lifestyle changes could lead to a reduction in the incidence of breast cancer.

Anatomically, the presence of increased amounts of fibroglandular tissue raises the estimated risk by up to 6 fold
(corrected for age), hence representing one of the strongest known risk factor pertaining to the entire female population.
In this study the relative area of mammographic densities within a mammogram will be used as a global risk assessment
tool. It has been shown previously that quantification of water, lipids, haemoglobin and other tissue chromophores of the
optically interrogated breast tissue which give also give rise to the mammographic densities, is feasible through near-
infrared spectroscopy. Thus, the hypothesis for this study is that optical transillumination spectroscopy provides
consistent and/or complementary information to conventional mammography in quantifying breast density.

Keywords: optical transillumination spectroscopy, breast tissue density, breast cancer risk, principle component
analysis.

towards a certain cancer is known, they often target
only a small subpopulation such as women with
BRCA1 and BRCA2 genetic mutations "’ and hence are
not suitable for population wide risk screening.

1. INTRODUCTION

Preventive oncology involves two tasks, first
identification of the population at risk and second the
implementation and efficacy monitoring of intervention
strategies. The first task requires methods and
techniques based on physical measurements that
identify individuals at high risk and who would benefit

Breast cancer is the most commonly occurring cancer in
women. The lifetime risk for developing breast cancer
is 1 in 5-10, depending on the reporting agency ¥,

most from the interventions. These risk quantification
techniques must be applicable to the entire population
and allow for identification of individuals at high risk
for developing cancer with high sensitivity and
specificity. The latter is important for several reasons:
to identify all individuals at risk, to decrease the
number of individuals undergoing unnecessary
treatment (i.e. those who are low or medium risk), and
to empower individuals to make informed decisions
regarding their health and the potential benefits of risk
reduction strategies. While some genetic predisposition

While, these statistics are rather poor one needs to
consider that the tissue transformation preceding breast
cancer can occur 20 years prior to the development of
the disease ) thereby providing a “window of
opportunity” to employ risk reduction interventions
such as modification in lifestyle, diet, chemopreventive
treatments (i.e. Tamoxifen, Raloxifene) [ or in severe
cases, such as women with BRCA1 and BRCA2
genetic mutations or similar risk prophylactic
mastectomy %), All of these interventions are designed
to prevent cancer and inadvertently they will influence




the quality of a woman’s life, particularly by those
rather aggressive interventions designed to achieve a
risk reduction in only a few month or years. Thus,
considering that identification of the women at risk at
an earlier age may result in an adequate reduction in
breast cancer risk by only a relatively small lifestyle
changes, such as exercise or diet but acting over a
longer period of time. Thus, a risk assessment technique
should be inherently, compatible with screening of a
women at an earlier age.

Current methods of establishing the breast cancer risk
include the Gail Risk Model ™ and parenchymal
density patterns derived from standard x-ray
mammography. The former is mostly based on
demographic information while the latter represents a
physical property of tissue. Parenchymal density
patterns reflect the ratio of glandular and connective
tissue to adipose tissue within the breast. Women with
mammographically dense tissue occurring in more than
70% of the breast are 4 to 6 times more likely to
develop breast cancer than those with low tissue density
(< 25%) ', Because of the inherent risks of X-rays,
mammography is not recommended as an annual
diagnostic for women younger than 40 in most
countries ), thereby limiting the time available for risk
reduction interventions to assert their influence.
Similarly, the demographic information required for the
Gail Risk Model is often not available for women until
they have reached thier late 30ties or 40ties. Strictly
speaking the Gail Risk Model is only valid for women
over 30.

Near-infrared optical transillumination spectroscopy
(OTS) has been shown to give information about breast
tissue composition !, Specifically, OTS results in
unique optical spectra, governed by hemoglobin, water
and lipid absorption in the tissue and the average
scattering power ), The differences in chromophore
contributions in the tissue have also been shown to
mirror the x-ray dense and x-ray lucent areas of the
mammogram %), In contrast to mammography, which
is based on ionizing radiation probing the nuclear
composition of tissue, OTS uses non-ionising radiation
with quantum energies that interact with the electronic
and vibrational levels of the molecules, representing
more the anatomic, metabolic status of the breast.
Consequently, OTS can be used more frequently and on
younger women and should be able to detect
differences in tissue composition between high and low
risk groups, based on molecular composition.

To establish the feasibility of OTS as a Breast Cancer
Risk assessment technique, correlations between the
spectra and the Parenchymal density pattern were
established. These correlations were initially
established using Principle Component Analysis (PCA),
using tissue density classifications by a radiologist as.
Multivariate analysis techniques are used to determine
if stratification of the spectral data by eiher
measurement position on the breast in cranial-caudal
projection (center, medial, distal, or lateral) or physical
parameters, such as the volunteer’s age and body mass
index (BMI), is beneficial in increasing the tissue
density prediction by OTS.

2. MATERIALS AND METHODS
2.1 Patient recruitment

The data set used in this study includes a collection of
mammograms and OT spectra gathered from 156
volunteers ' recruited through the Marvelle Koffler
Breast Centre at Mount Sinai Hospital, Toronto,
Ontario. All women had a film screening mammogram
within the last 12 months of being recruited, which was
negative for cancer lesions, and did not show a large
bilateral variation in tissue density. All women also had
no previous surgery to the breast tissue, including
reduction, implants or tattoos.

Film mammograms were classified on a nominal scale
by a radiologist (Dr. Roberta Jong) into either low (< 25
%), medium (25% to 75%) or high (> 75% dense tissue
area) density categories. Sixty-one women were
classified by the radiologist as having low, 68 as having
medium, and 27 as having high tissue density. The
population contributions of the tissue density categories
in this study closely reflect the population proportions
seen in the Canadian National Breast Screening Study
112} (Table 1). The age of the volunteers ranged from 36
to 72 years.

2.2 Visible near-infrared transmission

A 12W halogen lamp served as broadband light source,
ultra-violet, part of the visible spectrum and mid-
infrared radiation were eliminated using a cut-on filter
and a heat rejection filter, respectively, and the
remaining light was coupled into a 5 mm diameter
liquid light guide in contact with the skin on top of the
breast tissue. A total power of 0.25W, covering the 550
to 1300 nm bandwidth, was delivered to the skin.
Transmitted light was collected via a 7 mm diameter
optical fiber bundle (P&P Optica, Kitchener, Waterloo,




140 fibres, 200um, N.A. 0.36) and wavelength
dependent detection in the visible and near-infrared was
achieved using a Kaiser spectrophotometer with
holographic transillumination grating (15.7rules/mm
blazed at 850nm) and a 2D cryogenically cooled silicon
CCD (Photometrics, New Jersey, USA) at a spectral
resolution of better than 3 nm between 625 and 1060
nm. Spectral resolution was achieved by positioning a
0.5 mm slit between the distal end of the collection
fibre and the spectral grating. The peak quantum
efficiency of the back thin CCD is at 780 nm with a
quantum efficiency of 0.2 remaining at 1060 nm. By
imaging the entrance slit of the spectrograph onto the
2D CCD, 50 rows of pixels were exposed to detected
light thereby increasing the dynamic range of the
electronic detection by a factor of > 30. Cryogenic
cooling was used to minimize background noise.
Further signal to noise improvement was accomplished
by using exposure times of 3 to 5 seconds, and
averaging 5 scans for all spectra. Figure 1 shows a
block diagram of the setup

Light Source

Spectrometer

Fiber Optic Cable

Computer

Figure 1. Schematic of OTS setup.

All spectra were corrected for daily variations in the
wavelength dependent signal transfer function of the
optical system and the thickness of the interrogated
tissue. To correct for the signal transfer function,
spectra were referenced to a transmission standard
made of 1 cm thick ultra high density polyurethane
(Gigahertz Optics, Munich, Germany). Consequently,
all volunteer spectra are expressed in units of optical
density per centimeter [OD/cm)], given by the negative
log of the raw data spectrum divided by the reference
spectrum of the polyurethane block plus the optical
attenuation of the polyurethane block divided by the
interoptode distance. The scattering and absorption
properties of the standard were measured in a separate

experiment using an integrating sphere diffuse
reflectance set-up (¥ (OD ~ 1.8 — 2.3 over the
wavelength range of interest).

All volunteer measurements were taken in the dark,
with the volunteer seated comfortably in an upright
position and the breast resting on a horizontal platform.
A total of eight measurements in cranial-caudal
projection were taken, four per breast (center, medial,
distal, and lateral). Typical data acquisition for all 8
measurements averaged 160 to 200 seconds. The source
and detector fibers (optodes) were held coaxially,
pointing towards each other, by a caliper attached to the
resting platform providing the interoptode distance. The
source fibre was placed against the skin on the top
surface of the breast with minimal compression.
Considering typical tissue optical properties ['*! and a
tissue thickness of 5 cm, an ovoid shape volume
estimated at 30 cm’ is interrogated.

Table 1. Breakdown of study volunteers: including
study and population proportions and total number of
spectra analysed (numbers in parentheses).

Category Set Set Study

Proportion

Density  Training  Validation

Population

Medium

Low  46(368)  15(120)  39.0% 37.0%
51(408)  17(136)  43.6% 49.0%
High  20(160)  7(56) 17.3% 14.0%

Totals  117(936)  39(312)
2.3 Data Analysis

Principle Component Analysis (PCA) was used to
establish a correlation between the obtained optical
transillumination spectra and mammographic density.
PCA is an analytic mathematical method optimized for
comparison of vectors (i.e. spectra) with nominal data
(i.e. tissue density) ' '), PCA determines the amount
of variance within the population of spectra and
iteratively reduces the data to a few representative
spectra called components (p;). Scores () are then
assigned to each individual’s spectra to show how much
of each component is present in the original data
spectrum. The scores of two or more components can
also be plotted against one another to identify clusters
of spectra that are closely related and that exhibit
common traits. Clusters are assigned an outcome, here
low versus high tissue density, and lines or planes
separating clusters are determined analytically. Scores
that enable differentiation between tissue densities
identify useful component spectra and hence




chromophore contributions to density and thus
indirectly risk.

In this study, PCA was executed on 75% of all spectra
(n =936, 117 volunteers x 8 measurements) randomly
selected from each of the defined tissue density
categories comprising the training set. In this manner,
the relative contribution of each tissue density category
in the data sets was retained during the analysis. The
remaining 25% of the spectra (n = 312, 39 volunteers x
8 measurements) were placed in a validation set (Table
1). The principle components (p;) derived from the
training set spectra were then used to determine the
scores (#) on the validation set spectra, thereby testing
the predictive ability of the model. The PCA data sets
were not stratified by menopausal status (i.e. pre versus
ost-menopausal) since a previous study by our group
'"! demonstrated no influence of the menstrual cycle on
the spectral measurements.

To determine the predictive value of the PCA model
and hence OTS, two measures comparable to sensitivity
and specificity, a high density measure (HDM) and a
low density measure (LDM), were determined for both
the training and validation sets, where HDM are the
correctly predicted women with high tissue density over
all women with high density, and LDM respectively are
all correctly predicted women with low tissue density
over all women with low density.

HDM and LDM were determining using a separation
plane that differentiated the high and low tissue density
clusters resulting from spectra of the training sets in R°.
Analysis was executed on cluster plots using either
component scores (#) (n = 528) resulting from all

individual spectra or their means per individual (7,) (n

= 66, Table 1). For this each cluster was represented by
a linear regression analysis to calculate the plane of best
fit for both tissue density clusters, respectively, defined
by:

t,=b+at +apt, 2.1

Where /, represents one component randomly chosen as
dependent variable, # and f, are the independent
component scores using either £ or ¢, , a, and a, are the
resulting slopes, and b is the z-intercept.

The equation of the plane (#) separating the high and
low tissue density training sets was calculated as the
plane halfway between the low and high tissue density
planes defined by equation (2.1):

1
ti = E [(blow + axlow’xlaw t+a ylowt yiow )+ (bhigh + axhightxhigh +a yhigh t yhigh )]

2.2)

Where Gy, Gyiow 80 Gypign, Gynign are the slopes for the
low tissue density cluster and the high tissue density
cluster, respectively, by, and by, are the respective z-
intercepts, and Lo, iow, Lunighs bnign are the respective

component scores again using either #;or¢, .

Differences between component scores #; to # by
measurement position (center, medial, distal and lateral)
were tested by non-parametric methods using a
Kruskal-Wallis rank test. When testing for differences
between measurement positions, only measurements
from the left breast were used since we showed ! no
significant difference between component scores from
the left and right breast.

PCA derived component scores #; to ¢, for the low and
high tissue density categories as a function of a
volunteer’s age and body mass index (BMI) were
examined using Spearman’s r correlation analysis.
Linear regression analysis was also executed for
component scores # to # as a function of age or BMI.
For correlation and linear regression analyses, either all
scores (n = 1248) or scores averaged per individual (n =
156) were used.

For all analyses, p-values < 0.05 were considered to be
statistically significant.

3. RESULTS

3.1 PCA of density categories

Figure la and b shows examples of the raw data
collected for women with high and low tissue density ,
respectively. Figure 1c shows the resulting first four
principle components (p;) from the PCA for non-
stratified spectra thus using n = 936 spectra. These first
four components contain 99.87%, 0.06%, 0.05% and
0.01% of the variance in the total data set, respectively,
yielding a combined total of 99.99%. In principle, the
data can be represented in R*.

A R3 cluster plot of component scores ¢, ¢, and # from
the training spectra for only high and low tissue
densities (n = 528) is presented in Figure 2a. A

corresponding plot using mean component scores ¢,,




t, and t, per individual for the high and low tissue

densities for the training and validation sets (n = 88) is
shown in Figure 2b, demonstrating improved cluster
separation. Thus, spectra related to breast tissue
classified by the radiologist as either or low density
show differences in their spectral compositions,
resulting in reasonably tight clusters.
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Figure 1. Examples for transiflumination spectrum from
women with a) high tissue density, b) low tissue density and
c) the resulting principle components p; to p, of thickness and
transfer function corrected spectra, all given as a function of
wavelength.

3.2 PCA of density categories by measurement
position

For the low tissue density of the training set, a Kruskal-
Wallis rank test demonstrated a significant difference in

component scores 1, to ¢, between each measurement
position (all at p < 0.01). For the high tissue density

training set, only component score ¢, resulted in a

significant difference between each measurement
position. As a result, PCA was repeated separately for
each measurement position (center, medial, distal and
lateral). Spectra from both the left and right breasts
were used for training, e.g. 234 spectra from 117
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Figure 2. Three-dimensional cluster plots of #;, £, and ¢; for all
component scores (a) and mean scores per individual (b)
resulting from thickness and transfer corrected spectra of high
and low tissue density. Open symbols, scores from tissue
classified as low density; closed symbols, scores from tissue
classified as high density.




volunteers and 78 spectra from 39 volunteers for
validation.

Figure 3 shows the first four principle components (p;)
for the center and distal positions after stratified for
measurement position. Of the variance in the total data
set, the first component p; contains between 99.85%
and 99.91%, p, between 0.05% and 0.08%, p; between
0.03% and 0.05%, and p, contains 0.01%. Three-
dimensional cluster plots of component scores #, #; and
t; at the center position and scores #;, ¢, and #, at the
distal position are shown in Figure 4, respectively, for
high and low tissue density combined data sets (n =
176).
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Figure 3. Plots of principle components p; to p, for the center
(a) and distal (b) measurement positions.

3.3 HDM and LDM

Table 2 shows the resulting HDM and LDM calculated
using scores #;, #; and ¢ for the training and validation
sets using either all component scores (training = 528,
validation = 176) or the mean component score per
individual (training = 66, validation = 22). In the

majority of cases, HDM and LDM increase when the
mean component score ¢, per individual is used.

Table 3 provides the best HDM and LDM results for
the training and validation sets for each measurement
position. The center and distal positions show the best
HDM and LDM for the training and validation sets.
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Figure 4. Three-dimensional cluster plot of #;, #; and #; and ¢,
t; and ¢, resulting from thickness and transfer corrected
spectra from high and low density tissue for the center (a) and
distal (b) positions. Open symbols are low tissue density;
closed symbols are high tissue density. Circles refer to
training set and squares to validation set.




Table 2. HDM and LDM for test and validation sets using all
component scores and mean scores per individual.

Training Set Validation Set
Scores

Used [%] (%]
HDM LDM HDM LDM

AL 1 f601) 769 883 750 967
scores

Mean ¢ f@.1,) 850 891 857  100.0

score

Table 3. HDM and LDM for test and validation sets for each
measurement position

Position  Scores Training Set  Validation Set
Used [%] [%]
HDM LDM HDM LDM

Center  t,f(1,,1,) 950 870 929 900
Distal  t,f(s,t,) 90.0 913 1000 100.0
Medial 1 f(1,1,) 715 717 857 867
Lateral 1,f(t,,1,) 800 957 714  100.0

3.4 Number of Measurement Positions

Figure 5 shows histograms indicating the frequency of
true high and low tissue density predictions from OTS
for each individual. If scores # from 3 or more of four
spectra indicate high tissue density, the best HDM and
LDM are obtained using spectra from the center and
distal measurement positions (compare Fig. 5a to 5b).
When including medium tissue density for the centre
and distal position 33% would be classified as false
positive, see figure 6. While this appears to result in an
overall higher false positive rate, specifically when
considering that the medium density comprises half the
population, one also needs to consider that plane of
separation was determined only based on the total
difference between high and low clusters.

3.5 PCA and Physical Parameters (Age and BMI)

Linear regression analysis demonstrated a significant
correlation between the component scores # and age or
BMI. However, further analysis showed that the age
dependent slopes of the different tissue densities are in
effect parallel and hence without a priori knowledge of

the tissue density, no age or BMI correction can be
introduced.
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Figure 5. The number of spectra from (a) the center and distal
positions to predict global tissue density with a resulting
LDM =96.7% and HDM 96.3% and (b) the medial and lateral
positions with a resulting LDM =95.1% and HDM 70.4% (b)
that correctly predicted high tissue density. High tissue
density shown in black, low tissue density shown in grey.
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Scatter plots of mean component scores ¢, and Z per
individual as a function of the volunteer’s age and body
mass index for the high and low tissue densities are
shown in Figure 7 and 8 respecitvely. The results of
linear regression analysis between age or BMI and the
first two component scores are also indicated.
According to Spearman’s r, a significant but weak

correlation exists between both component scores ¢,
and ¢, and age or BMIL. Similar results were obtained
for component scores #; and ¢, (data not shown).
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Figure 7. Scatter plots of averaged component scores ;: (top)

and ;;(bottom) per individual as a function of age for high

(closed symbols and dashed line) and low (open circles and
solid regression line) tissue density categories.
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Figure 8. Scatter plots of averaged component scores ;; (top)

and Z(bottom) per individual as a function of BMI for high

(closed symbols and dashed line) and low (open circles and
solid regression line) tissue density categories.

4. DISCUSSION

4.1 Principle Component Analysis (all measurement
positions)

Input parameters such as known tissue chromophore
spectra were not implemented in the training of our
PCA model. Despite this fact, each derived principle
component, p;, includes a combination of spectral
signatures comprising light scattering and chromophore
absorptions (water, lipid and hemoglobins), which vary
with breast tissue density.

Scores associated with principle component p; contain
information on wavelength independent absorption due




to differential optical path length, and light losses at the
breast boundary and have negative values in the PCA
model (Fig. 1). Light scattering is tissue dependent and
its wavelength dependence can be described by

u'=ai® U Light losses due to scattering occur

because of an increase in photon path length and thus a
lower probability of traversing tissue. The polyurethane
standard, also a Mie scatterer, with an albedo > 0.999
was used to calibrate the spectral transfer function of
the optical system daily and thus, the wavelength
dependence of the scattering in the breast tissue is
minimized or lost "' Hence, p; carries wavelength
independent optical path length information and via the
change in optical path length between tissue types it can
contributes to determine tissue density. For example,
low density tissue has reduced scattering when
compared to high density tissue {'"), resulting in higher
values of #; (i.e. less negative), indicating less
attenuation or loss of light and a shorter optical path
length.

Light losses at the breast boundary are also captured in
P1. We have shown previously that measurements taken
at the medial position are different from the centre
measurement and similar to measurements made closer
to the edge of the breast '), This further suggests that
stratification by position is beneficial.

The most important spectral features in the spectrum of
p: are the lipid peak at 925 nm and the inverse water
peak at 975 nm (Fig. 1). Low density tissue is
characterized by adipose tissue resulting in positive
scores ¢, (Fig. 2) when the lipid peak is the dominant
spectral feature. Smaller contributions in the low tissue
density spectrum are also evident at 770 nm (deoxy
hemoglobin) and 825 nm, a minor lipid absorption
peak. Conversely, high density tissue has a higher water
content !'® and the scores 1, are predominantly negative,
when the water peak is the dominant spectral feature
(Figs. 1, 2). Contributions from deoxy hemoglobin are
also evident in the high tissue density spectrum of p,
between 625 and 750 nm, where the negative slope of
the deoxy hemoglobin curve is visible (Fig. 1).

The spectrum of p; is relatively flat between 625 nm
and 875 nm, which can be attributed to contributions
from the oxy hemoglobin curve (Fig. 1). Another
notable feature is that the lipid and water peaks are
positive compared to the spectra of p, and p, (see
below). Component scores #; for low density tissue are
positive when the lipid peak is the dominant spectral
feature (Figs. 1, 2). Component scores # for high
density tissue are negative, suggesting a shift from an

oxy hemoglobin curve to a deoxy hemoglobin curve (as
seen in the spectrum of p,). Since decreases in oxy§en
are associated with increased cellular metabolism %
oxygen saturation is smaller in high density tissue when
compared to low density tissue.

The spectrum of p, is similar to that of p, (Fig. 1),
however, for low density tissue, component scores #
are negative and for high density tissue, they are
positive (Fig. 2).

Cluster plots in three dimensional space defined by ¢, £,
and #; result in a good separation between high and low
tissue densities, either when all component scores are
used (#) or when the mean score per individual is used

(t_1) (Figs. 2a and b). The improvement in HDM and

LDM for the mean component scores is given by the
fact based on the definition of high and low density
only 3 of 4 quadrants scores need to be with in the
cluster based on the mammographic global
classification. Averaging the scores reduces the effect
of measuring possible a local volume not expressing the
globally assessed density.

4.2 Principle Component Analysis by measurement
position

Positional analysis suggests that the PCA model should
be trained independently on each measurement position
(center, medial, distal, and lateral). The results of the
PCA for each individual position and the subsequent
analysis of cluster plots in three dimensional spaces
show that only two positions need to be interrogated:
the center and the distal. In general, the component
spectra p; for these two positions are comparable with
the exception that component spectrum p; for the center
position is similar to component spectrum p; for the
distal position and vice versa (Fig. 3). Both component
spectra (p, at center and p; at distal) are spectrally flat
over a large wavelength region with poor differentiation
of the lipid and water peaks. Consequently, cluster plots
in a three dimensional space defined by #;, # and #,
result in a good separation between high and low tissue
densities for the center position and cluster plots in a
three dimensional space defined by ¢, £; and ¢, result in
a good separation between high and low tissue densities
for the distal position (Fig. 4). The exchange of the
significance between #; and #; for the center and distal
positions is most likely limited by the small amount of
variance captured by them in association with the
limited number of observations available to date.

4.3 HDM and LDM




Because radiological assigned parenchymal density is a
global analysis, calculating HDM and LDM using all
eight spectra derived component scores induces obvious
additional variability as the density is not distributed
homogeneously throughout the tissue. Using the mean
score per individual reduces the variability in the OTS
predicted density within an individual’s breast tissue
(Fig. 2b; Table 2).

The best estimation of a global classification is pooling
spectra from different positions (n = 2). The highest
HDM and LDM is achieved using spectra from the
center and distal positions. (Fig. 5a). The HDM and
LDM based on these two positions might be a slight
overestimate of the predictive power of the test given
that women who demonstrated variation in the bilateral
organ were excluded from analysis. However, it also
suggests that improved PCA training is possible if the
regional tissue density associated with each optically
interrogated volume is known.

The medial position provides acceptable HDM and
LDM for our validation set (Table 3). The lateral
position provides LDM comparable to the distal
position, but the lowest HDM among positions for our
validation set (Table 3). This difference in the
predictive value of the different quadrants is a direct
reflection of the spatial prevalence of parenchymal
density pattern within the breast '),

4.4 Component scores and physical parameters (Age
and BMI)

As the population ages one would expect an increase in
component scores #; and ¢, since atrophy of the tissue,
still ongoing past menopause, would result in less light
scatter and an increase in lipid content ), However,
from Figures 6a and b, it is evident that there is a small
increase in component scores ¢, with age for both low
and high density tissue, and little to no increase in #,
with age for the low and high tissue density categories.
So as a predictive tool the odds ratio or relative risk
should be independent of age. Similarly, with an
increase in BMI we anticipate component scores #; and
t, to increase. A small but significant association exists
with BMI and component scores ¢; and ¢, for the low
tissue density group (Figs. 6¢, d). A cluster of scores £,
and ¢, related to the high density tissue is seen for low
BMI, which results in an apparent large slope for this
group; however, the correlation coefficients are weak.

10

While some statistically significant correlations can be
established between age and BMI and the component
scores #; and ¢,, these associations are also dependent on
a woman’s density classification. Consequently, no
correction for age or BMI is possible since the density
of a woman coming in for OTS measurements is not
known a priori. This further suggests that the
physiological changes in breast tissue density due to
age and BMI are already contained in the component
spectra and hence captured by the derived component
scores.

5. CONCLUSION

OTS is a physical assessment technique applicable to
the population at risk that only requires information on
the inter-optode distance and the location of the
measurements on the breast in cranial caudal projection
(center, medial, distal, and lateral). Consequently the
spectra are independent of the instrument and
interrogated tissue thickness, and are hence portable
between instruments. Furthermore, only two positions
need to be interrogated, the center and the distal, to
produce sensitivity and specificity values above 96%.
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Abstract

Preventive oncology is in need of a risk assessment technique that can identify
individuals at high risk for breast cancer and that has the ability to monitor the efficacy of a risk
reducing intervention. Optical transillumination spectroscopy (OTS) gives information about
breast tissue composition and tissue density. OTS is non-invasive and in contrast to
mammography, uses non-ionising radiation. It is safe and can be used frequently on younger
women, potentially permitting early risk detection and thus increasing the time available for risk
reduction interventions to assert their influence. Before OTS can be used as a risk assessment
and/or monitoring technique, its predictive ability needs to be demonstrated and maximized
through the construction of various mathematical models relating OTS and an established breast
cancer risk factor. Here we selected parenchymal density pattern as risk predicting standard.

To establish a correlation between OTS and parenchymal density pattern Principle
Components Analysis (PCA), using risk classifications, is executed. The PCA scores from 156
volunteers are presented in three-dimensional cluster plots and a plane of differentiation that
separates the high and low tissue densities is used to calculate the predictive value. Stratification
of PCA for measurement position on the breast in cranial-caudal projection is introduced.
Analysis of PCA scores as a function of the volunteer’s age and body mass index (BM]) is
examined, as options for further subject stratification.

A small but significant correlation between the component scores and age or BMI is
noted but the correlation is dependent on the tissue density category examined. Correction of the
component scores for age and BMI is not recommended, since a priori knowledge of a women’s
breast tissue density is required. Stratification for the center and distal measurement positions

provide a predictive value for OTS above 96%.




Introduction

Preventive oncology involves identification of the population at risk and the
implementation and monitoring of intervention strategies. The first task requires methods and
techniques based on physical measurements or demographic information that identify individuals
at high risk who would benefit most from the interventions. These risk quantification techniques
must be applicable to the entire population and permit identification of individuals at high risk
for developing cancer with high sensitivity and specificity. The technique should exploid a risk
identifier providing a high relative risk or high odds ratio so all individuals at risk are identified
while decrease the number of individuals undergoing unnecessary treatment (i.e. those who are
low risk). Thus, individuals are provided with the information required to empowering them to
make informed decisions regarding their health and the potential benefits of risk reduction
strategies. While genetic predisposition towards certain cancers is known, only a small
percentage of the population is affected, such as women with BRCA1 and BRCA?2 genetic
mutations’ who comprise only a fraction of one percent of the general population and hence this
information is not suitable for population-wide screening.

Breast cancer is the most commonly occurring cancer in women. The lifetime risk for
developing breast cancer is 1 in 5-10, depending on the reporting agency’. The tissue
transformation preceding breast cancer can occur 20 years prior to the development of the
disease’ thereby providing a “window of opportunity” to employ risk reduction interventions
such as modification in lifestyle, diet, chemopreventive treatments (i.e. Tamoxifen, Raloxifene) 4
or in severe cases, prophylactic mastectomy®. While all of these interventions are designed to

prevent cancer, they will inadvertently influence the quality of a woman’s life, specifically those




interventions designed to achieve a reduction in risk in only a few months or years. Conversely,
identifying women at risk at an earlier age may only require relatively small lifestyle changes,
which, acting over a longer period of time, may also achieve an adequate reduction in risk. To
achieve this goal, a technique capable of detecting women at high risk for breast cancer at an
earlier age is required. Employing a physical method of assessing the breast cancer risk may also
prove useful in monitoring the efficacy of risk reducing interventions, as the intervention may
change the physical properties, whereas the demographic information about an individual is not
altered due to the intervention.

Current methods of establishing breast cancer risk include the Gail Model® and
parenchymal density patterns derived from standard x-ray mammography. The former method is
primarily based on demographic information while the latter represents a physical property of
tissue. Parenchymal density patterns reflect the ratio of glandular and connective tissue to
adipose tissue within the breast. Women with mammographically dense tissue occurring in more
than 70% of the breast are 4 to 6 times more likely to develop breast cancer than those with
density showing in less than 25% of the area’. Because of the inherent risks of X-rays,
mammography is not recommended as an annual diagnostic for women younger than 50 in some
countries and younger than 40 in others®, thereby limiting the time available for risk reduction
interventions to assert their influence. Similarly, the demographic information required for
inclusion in the Gail Model is often not available until women have reached their late thirties or
forties. Furthermore, the Gail Model is only valid for women older than 30 again forgoing useful
intervention years.

Near-infrared optical transillumination spectroscopy (OTS) has been shown to give

information about breast tissue composition’. Specifically, OTS results in unique optical spectra,




governed by hemoglobins, water and lipid absorption within the tissue and the average light
scattering powerm. The differences in chromophore contributions in the tissue have also been
shown to mirror the x-ray dense and x-ray lucent areas of the mammogram'!. In contrast to
mammography, which is based on ionizing radiation probing predominantly the atomic
composition of the tissue, OTS uses non-ionising radiation with quantum energies that interact
with the electronic and vibrational levels of the molecules, representing more the anatomic,
metabolic status of the breast. Consequently, OTS can be used more frequently and on younger
women and has the capability of detecting differences in tissue composition between high and
low risk groups, based on molecular composition.

In an ongoing feasibility study using mammographic breast density classified on a
nominal scale as an interim indicator of risk, our group has shown that OTS can identify women
with high breast tissue density with a predictive value above 85%. However, before OTS can be
implemented as a tool for risk estimation and/or as a monitoring technique during risk reducing
interventions, it is necessary to optimize the predictive ability or the relative risk provided by
OTS, thus minimizing the number of patients given an incorrect risk assessment. By establishing
a relative risk for OTS similar to that of mammography through the use of non-ionizing radiation
a gain two decades for risk reduction interventions to exert their benefit is possible.

The present investigation is an extension of earlier studies performed by our group12 with
the main purpose to improve the predictive power of OTS by identifying required stratifications
on a larger number of volunteers, prior to employing our analysis techniques. Principle
Components Analysis (PCA) using risk classification by a radiologist as the ‘gold standard’ is
employed to establish a correlation between OTS and mammographic density pattern.

Multivariate analysis techniques are used to determine if stratification of the spectral data by




measurement position on the breast in cranial-caudal projection (center, medial, distal, or lateral)
or physical parameters such as the volunteer’s age and body mass index (BMI) is beneficial in
increasing the tissue density prediction by OTS.

Materials and Methods

Patient recruitment

The data set used in this study includes a collection of mammograms and spectral
information gathered from 156 volunteers. All volunteers were recruited through the Marvelle
Koffler Breast Centre at Mount Sinai Hospital, Toronto, Ontario. All women had a film
screening mammogram within the last 12 months of being recruited, which was negative for
radiological suspicious lesions. All women also had no previous surgery to the breast tissue,
including reduction or implants. Volunteer recruitment for this study was approved by the IRBs
of the University of Toronto and the University Health Network. Informed consent was received
from all volunteers prior to OTS.

Film mammograms were classified on a nominal scale by a radiologist (Dr. Roberta Jong,
Women’s College and Sunnybrook Health Science Centre, Toronto, Ontario) into either low (<
25 %), medium (25% to 75%) or high (> 75% dense tissue area) density categories. Women who
displayed bilateral variations on their mammograms were not included in this analysis. Sixty-one
women were classified by the radiologist as having low, 68 as having medium, and 27 as having
high tissue density. The population contributions of the tissue density categories in this study
closely reflect the population proportions seen in the Canadian National Breast Screening

Study'? (Table 1). The age of the volunteers ranged from 36 to 72 years.
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Visible near-infrared transmission

The instrumentation used to gather transillumination spectra was described previously in
detail'?. Briefly, a 12W halogen lamp served as broadband light source, ultra-violet and part of
the visible spectrum and mid-infrared radiation were eliminated using a cut-on filter (4>550
nm) and a heat rejection filter, respectively. The remaining light was coupled into a 5 mm
diameter liquid light guide [Fiberguide Industries, Bridgewater, NJ] placed in contact with the
skin on top of the breast tissue. A total power of 0.25W, covering the 550 to 1300 nm bandwidth,
was delivered to the skin. Transmitted light was collected via a 7 mm diameter optical fiber
bundle [P & P Optica, Kitchener, Waterloo, 140 fibres, 200 um, N.A. 0.36]. Wavelength
dependent detection in the visible and near-infrared was achieved using a spectro photometer
(Kaiser, California, USA) equipped with holographic transillumination grating (15.7rules/mm
blazed at 850nm) and a 2D cryogenically cooled silicon CCD (Photometrics, New Jersey, USA)
at a spectral resolution of better than 3 nm between 625 and 1060 nm. Spectral resolution was
achieved by positioning a 0.5 mm slit between the distal end of the collection fibre and the
spectral grating. The peak quantum efficiency of the back thin CCD is at 780 nm with a quantum
efficiency of 0.2 remaining at 1060 nm. By imaging the entrance slit of the spectrograph onto a
2D CCD, 50 rows of pixels were exposed to detected light thereby increasing the dynamic range
of the electronic detection by a factor of > 30. Cryogenic cooling was used to minimize
background noise. Further signal to noise improvement was accomplished by using exposure
times of 3 to 5 seconds, and averaging 5 scans for all spectra. Hospital Grade Canada Standards
Association (CSA) certification was obtained for use of the instrumentation on volunteers.
Health Canada regulation (IEV 825 equivalent)'* for the maximuﬁ permissible exposure for

radiation sources at non-therapeutic doses was not exceeded.




All volunteer measurements were taken in the dark, with the volunteer seated
comfortably in an upright position and the breast resting on a horizontal platform. A total of
eight measurements in cranial-caudal projection were taken, four per breast (center, medial,
distal, and lateral, see Fig. 1, they are rotated by about 45° relative to standard radiological
quadrants). A computer allowed for system control and data display. Typical data acquisition for
all 8 measurements averaged 160 to 200 seconds, each. The source and detector fibers (optodes)
were held coaxially, pointing towards each other, by a caliper attached to the resting platform
providing the interoptode distance. The source fibre was placed against the skin on the top
surface of the breast with minimal compression. Considering typical tissue optical properties'’
and a tissue thickness of 5 cm, an ovoid shape volume estimated at 30 cm’ is interrogated. In this
study tissue thickness ranged from 2.5 to 8 cm, equivalent to 12 or 54 cm’.

All spectra were corrected for daily variations in the wavelength dependent signal
transfer function of the optical system and the thickness of the interrogated tissue, such that all
spectra are independent of the instrument and the interoptode distance. This is achieved by
referencing all spectra to a transmission standard made of 1 c¢m thick ultra high density
polyurethane (Gigahertz Optics, Munich, Gérmany). Consequently, all volunteer spectra used in
this study are expressed in units of optical density per centimeter [OD cm™], given by the
negative log of the raw data spectrum divided by the reference spectrum of the polyurethane
block plus the optical attenuation of the polyurethane block and divided by the interoptode
distance. The scattering and absorption properties of the standard were measured in a separate
experiment using an integrating sphere diffuse reflectance set-up'® (OD ~ 1.8 to 2.3 over the

wavelength range of interest).
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Data Analysis

Principle Components Analysis (PCA) was used to establish a correlation between the
obtained optical transillumination spectra and mammographic density'’. PCA is an analytic
mathematical method optimized for comparison of vectors (i.e. optical spectra) with nominal
data (i.e. tissue density). PCA relies upon an eigenvector decomposition of the covariance or
correlation matrix of the data matrix (m x n) comprised of a training data set of spectra (m = 936)
and the monitored spectral range (n = 436 wavelengths). PCA decomposes this data matrix as the
sum of the outer product of vectors # and p; plus a residual matrix. The elements of the # vectors,
called scores (i.e. scalar coefficients), contain information on how the samples (i.e. spectra)
relate to each other; the p; vectors, or components, are the eigenvectors of the covariance matrix
and show how the selected variables (i.e. wavelengths) relate to each other. It is noteworthy that
the component vectors p; are orthogonal to one another.

Every individual spectrum can be approximated as a linear combination of the principle
component spectra (p;) where each component is weighted by the scalar coefficient or score (#)
for that individual spectrum. It is generally found that the data can be described in fewer
components than original variables (1) and still capture > 99.9% of the total variance. The first
component tends to capture the greatest amount of variation in the data; each subsequent
component captures the greatest possible variance remaining. The scores of two or more
components can also be plotted against one another as they are based on orthogonal vectors. To
identify spectra that are closely related and that exhibit common traits, clusters within those 2 or
higher dimensional plots are analyzed. Clusters are assigned an outcome, here low versus high
tissue density, and lines or planes separating the clusters are determined analytically. Scores that

enable differentiation between tissue densities identify useful component spectra and hence




specific chromophore contributions to various tissue density and thus indirectly to risk. For a
more detailed description of PCA and the mathematical models employed, the reader is referred
to Simick (2001)'? and Wise (2000)"".

In this study, PCA was executed on 75% of all spectra (n = 936, 117 volunteers x 8
measurements) randomly selected from each of the defined tissue density categories comprising
the training set. In this manner, the relative contribution of each tissue density category in the
data sets was retained during the analysis. The remaining 25% of the spectra (n = 312, 39
volunteers x 8 measurements) were placed in a validation set (Table 1). The principle
components p; derived from the training set spectra were then used to predict the scores (#) on
the validation set spectra, thereby testing the predictive ability of the model. As previously
described, the data was only corrected for the spectral transfer function of the optical system and
the thickness of the interrogated tissue. The data sets were not stratified by menopausal status
(i.e. pre versus post-menopausal) since a previous study by our group'? demonstrated no
influence of the menstrual cycle on the spectral measurements.

Furthermore, as optical transillumination spectroscopy (OTS) is proposed as a physical
method for risk assessment applicable to the entire population, this analysis focuses only on
variables associated with physical parameters, more specifically measurement position,
volunteer’s age, and volunteer’s body mass index (BMI), although information on other risk
factors, such as family history of breast cancer, parity and ethnicity, was collected for each
volunteer. All statistical analyses were carried out using SPSS 11.0 (Statistical Package for the
Social Sciences, SPSS Inc., USA).

To determine the predictive value of the PCA model and hence OTS, two measures,

comparable to sensitivity and specificity were determined: high density measure (HDM) and low
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density measure (LDM). HDM and LDM were determined for both the training and validation
sets using the following equations:

TP IN

HDM = ——— LDM = ——
TP+ FN IN + FP

Where true positive (TP) is the number of spectra representing high tissue density located below
the separation plane in a three-dimensional cluster plot, defined below, and false negative (FN)
is the number of spectra representing high tissue density situated above the separation plane.
Conversely, true negative (TN), is the number of spectra representing low tissue density located
above the separation plane and false positive (FP) is the number of spectra representing low
tissue density situated below the separation plane.

HDM and LDM were estimated by determining the separation plane that differentiated
the high and low tissue density clusters resulting from the training set scores in three-

dimensional plots using either all component scores () (n = 528, all 8§ measurements per
volunteer) or mean scores per individual (Z) (n = 66, Table 1). Linear regression analysis was

used to first calculate the plane of best fit for both the high and low tissue density clusters,
respectively, defined both by:

t,=b+a,t +ay, (2.1)

selecting the scores of one component randomly as the dependent variable z, and where b is the

z-intercept, a, and a, are the slopes for the two independent component scores, #, and #, using
either all or the mean scores (¢; or Z )s-

The equation (Zn) of the plane separating the high and low tissue density training sets

was calculated as the plane halfway between the two low and high tissue density planes:
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A )+ )
t icrit = E blow + axlowtxlow +a ylawtylow + bhigh + a.xhightxhigh + ayhightyhigh (22)

Where ayiow, ayiow and Gxpigh, Ayhign are the slopes for the low tissue density cluster and the high

tissue density cluster, respectively, i, and byig are the respective z-intercepts, and o, iow,
Lehighs tyhigh are the respective component scores used (¢ 0r¢, ).

Differences between component scores #; to #; by density classification and by
measurement position (center, medial, distal and lateral) were tested by non- parametric methods
using either the Mann-Whitney U test or a Kruskal-Wallis rank test. Non-parametric testing was
warranted since the component scores for the majority of cases are not normally distributed.
When testing for differences between measurement positions only, measurements from the left
breast were used since we showed previously'? no significant difference between component
scores from the left and right breast when excluding women showing variability in the tissue
density.

PCA derived component scores #; to #, for the low and high tissue density categories as a
function of a volunteer’s age and body mass index (BMI) were examined using Spearman’s r
correlation analysis. Linear regression analysis was also executed for component scores #; to Zs as
a function of age or BMI. For correlation and linear regression analyses, either all scores (n =
1248) or scores averaged per individual (n = 156) were used.

For all analyses, p-values < 0.05 were considered to be statistically significant.

Results
PCA of density categories all measurement positions
Figure 2 shows the resulting first four principle components (p;) from the PCA not

stratified for measurement position and thus based on n = 936 spectra. These first four
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components contain 99.87%, 0.06%, 0.05% and 0.01% of the variance in the total data set,

respectively, yielding a combined total of 99.99%.

Box and whisker plots of the first four component scores (#;) for each density category for
the training and validation sets are presented in F igure 3. A Kruskal-Wallis rank test
demonstrated that the scores for the first four components #; to # are each significantly different
between the low, medium and high tissue densities for both the training and validation data sets
(all at p < 0.01). The Mann-Whitney U test demonstrated that the scores for the first four
components # to  for the training set differed significantly between all permutations of density
classification at p < 0.01. However, for the validation set, only three scores per permutation
showed significance at p < 0.01: ¢, ¢, and #, between low and medium tissue density, #;, t; and #;

between low and high tissue density, and #,, #; and #, between medium and high tissue density.

An example of a three-dimensional cluster plot of component scores #, £; and # from the
training spectra using only information from woment with either high or low tissue densities (n =
528) is presented in Figure 4. Discrimination of the high and low tissue densities is achieved

across a three-dimensional plane of separation (not shown) analytically derived from linear
regression analysis. A similar 3D plot using mean component scores Z, Eand Z per
individual for those with either high or low tissue densities for the training and validation sets (n
= 88) is shown in Figure 5, demonstrating improved cluster separation.
PCA of density categories by measurement position

Figure 6 displays mean component scores Z to Z in the training set for each of the four

left measurement positions for the high and low tissue densities resulting from the position

independent PCA. For the low tissue density group in the training set, a Kruskal-Wallis rank test
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demonstrated a significant difference in component scores ¢, to #, between each measurement

position (all at p < 0.01). For the high tissue density group, only component score ;; resulted in
a significant difference between each measurement position. There is no difference in component
score ;‘; between positions (p = 0.055) at a power > 0.6. For component scores E , there is no

difference between measurement positions (p = 0.095) at a power > 0.9.

Because of the significant differences observed PCA was repeated separately for each
measurement position (center, medial, distal and lateral). Spectra from both the left and right
breasts were used for training.‘ For each position, 234 spectra frolm 117 volunteers were used to
train the models, and 78 spectra from 39 volunteers were used to validate them. Box plots, three-
dimensional cluster plots and results of non-parametric tests are presented for the center and
distal measurement positions only, since these positions provided the best HDM and LDM (see

below).

Figure 7 shows the first four principle components (p;) resulting from PCA stratified for
measurement position. Of the variance in the total data set, the first component p; contains
between 99.85% and 99.91%, p; between 0.05% and 0.08%, p; between 0.03% and 0.05%, and

P4 contains 0.01% .

Box and whisker plots of the first four component scores (#;) for each density category for
the center and distal positions for the training and validation sets are presented in Figures 8 and
9. For the center position, a Mann-Whitney U test demonstrated a significant difference between
the low and high tissue density for both training and validation sets in component scores #; and #;
(p < 0.01). For component scores #, and # in the validation set, there is no difference between

high and low tissue densities (p = 0.579 and p = 0.338, respectively) at a power > 0.6 and 0.9,
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respectively. For the distal position, a Mann-Whitney U test demonstrated a significant
difference in component scores #;, #; and #; between the low and high tissue density for both
training and validation sets (all at p < 0.01). For component score # in the validation set, there is

no difference between high and low tissue densities (p = 0.860) at a power > 0.6.

Three-dimensional cluster plots of component scores #;, #; and # at the center position
and scores #;, t; and #; at the distal position are shown in Figure 10 and 11 respectively for high

and low tissue density combined datasets (n = 176).
HDM and LDM

Table 2 shows the resulting HDM and LDM calculated for the training and validation sets
using either all component scores (training = 528, validation = 176) or the mean component
score per individual (training = 66, validation = 22) without stratification for measurement
position. The best HDM and LDM values for both data sets are obtained separating the two

tissue density classes when ¢, is a function of # and #. In the majority of cases, the HDM and
LDM increase when the mean component score Z per individual is used.

Table 3 provides the best HDM and LDM results for the training and validation sets for
each measurement position using either #, or #; as the dependent variable. The center and distal
positions show the best HDM and LDM for the training and validation sets.

Number of Measurement Positions

Figure 12 shows histograms indicating the frequency of true high or low tissue density
predictions through OTS for each individual. From these figures it is apparent that if scores %
from 3 or more of four spectra indicate high tissue density, the best HDM and LDM are obtained
using spectra from the center and distal measurement positions only (Fig.12a). Spectra from the

medial and lateral positions conversely result in the lowest HDM and LDM values (Fig.12b).
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PCA and Physical Parameters (Age and BMI)

Linear regression analysis demonstrated a significant correlation between the component
scores ¢ and age or BMI. However, further analysis showed that the age dependent slopes of the
different tissue densities are in effect parallel and hence without a priori knowledge of the tissue

density, no age or BMI correction can be introduced.

A scatter plot of mean component scores Zand ;; per individual as a function of the
volunteer’s age for the high and low tissue densities is shown in Figure 13. Figure 14 is a similar
scatter plot of the mean component scores ;; and ¢, for each individual versus their BMI. The

results of linear regression analysis between age or BMI and the first two component scores are

also indicated. According to Spearman’s 7, a significant but weak correlation exists between

both component scores Z and t_; and age or BMI. Similar results were obtained for component

scores #3 and #,(data not shown). f;gdu;:s 13
. . after
Discussion paragraph

Principle Component Analysis (all measurement positions)

The fact that significant differences between component scores (#;) for different
permutations of density classification were found for the training set but not for the validation
set, specifically for scores # between medium and high tissue densities, #; between low and
medium tissue densities, and #, between low and high tissue densities (Fig. 3), suggests possible
overtraining of our PCA model. The fact that #, showed no significant difference between the
low and high tissue densities for the validation set indicates that the residual variance of ~ 0.01%
is not capable of differentiating between these two extreme density categories.

Input parameters, such as known tissue chromophore spectra, were not implemented in

the training of our PCA model. Despite this fact, each derived principle component (p;) includes
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a combination of spectral signatures related to light scattering and chromophore absorptions
(water, lipid and hemoglobins), which vary with age ™, menopausal status ™, pathology *f and
breast tissue density ™.

Scores associated with principle component p; can be interpreted as contain information
on wavelength independent light loss, due to increased absorption based on the differential

optical path length, and light losses at the breast boundary. The scores have negative values in

the PCA model (Fig. 2). Light scattering and hence, the differential optical path length is tissue
and wavelength dependent and can be described by u,'= aA™'®. Light losses due to scattering

occur because of an increase in photon path length and thus a lower probability of traversing
tissue. A polyurethane standard, with scattering properties similar to tissue and an albedo >
0.999, was used to calibrate the spectral transfer function of the optical system daily and by
obtaining the ratio of the tissue transillumination spectra and the standard spectrum the
wavelength dependence of light scattering in the breast tissue is minimized or lost'2. Hence, p;
carries wavelength independent optical path length information but contributes information to
determine tissue density. For example, low density tissue has reduced scattering when compared
to high density tissue'’, resulting in higher values of # (i.e. less negative), indicating less
attenuation or loss of light resulting from a shorter optical path length (Fig. 3). The relationship
between tissue density and light scattering has been observed previously by other groups'>'” 20,21
where pre menopausal tissue (mostly high density) has a higher scattering coefficient than post
menopausal tissue (mostly low density).

Light losses at the breast boundary are also captured in p;. The difference in component

scores #; observed between positions (Fig. 6) can be explained by light losses where the breast

boundary is parallel to the optical axis between optodes (medial, lateral, and distal positions). We
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have shown previously that measurements taken at the medial position are different from the
centre measurement and similar to measurements made closer to the edge of the breast'?. The
larger #; values at the center position indicate minimal light losses due to boundary conditions.
Light losses are highest at the distal position, where the shift towards smaller scores suggests
more transmission attenuation due to light losses. These observations suggest that stratification
as a function of position is beneficial.

The most important spectral features in the spectrum of p;, are the lipid peak around 925
nm and the inverse water peak around 975 nm (Fig. 2). Low density tissue is characterized by
adipose tissue and positive scores £, resulting in lipid peak being the dominant spectral feature
(Fig. 3). Smaller contributions in the low tissue density spectrum are also evident at 770 nm
(deoxy hemoglobin) and 825 nm, a minor lipid absorption peak. Conversely, high density tissue
has a large water content?” and the scores #, are predominantly negative, resulting in the water
peak being the dominant spectral feature (Fig.3). Contributions from deoxy hemoglobin are also
evident in the high tissue density spectrum of p, between 625 and 750 nm, where the negative
slope of the deoxy hemoglobin curve is visible.

The spectrum of p; is relatively flat between 625 nm and 875 nm, which can be attributed
to contributions from the oxy hemoglobin curve (Fig. 2). Another notable feature is that lipid and
water are positive, compared to the spectra of p; and p4 (see below). Component scores #; for low
density tissue are positive when the lipid peak is the dominant spectral feature (Fig. 3).
Component scores #; for high density tissue are negative, suggesting a shift from an oxy
hemoglobin curve to a deoxy hemoglobin curve (as seen in the spectrum of p;). Since decreases
in oxygen are associated with increased cellular metabolism?®!, oxygen saturation is anticipated to

be smaller in high density tissue when compared to low density tissue.
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The spectrum of py is similar to that of p, (Fig. 2), however, for low density tissue,
component scores #; are negative and for high density tissue they are positive (Fig. 3). The lipid
peak at 925 nm and the water peak at 975 nm are the dominant spectral features for the low and
high density tissue, respectively. Smaller contributions from presumably the hemoglobin
saturation between 775 nm and 875 nm are also noticeable.

Cluster plots in three dimensional space defined by #;, 2 and #; result in a good separation

between high and low tissue densities, either when all component scores are used (#;) or when the
mean score per individual is used (;,-—) (Figs. 4 and 5). In both cluster plots, scores for low

density tissue are tightly clustered above a plane of separation, whereas scores for the high
density tissue are more spread out and are situated below a plane of separation. The low density
cluster is tight despite the fact that low density breasts are more common in the general and in
our study population (Table 1).

The results of positional analysis (Fig. 6) suggest that the PCA model should be trained
independently on each measurement position (center, medial, distal, and lateral). For instance,
analysis of component scores ¢, and #; by measurement position demonstrates differences in
wavelength dependent attenuation within various regions of the breast. The smaller values for
component scores #; at the distal and lateral positions indicate greater attenuation by water at
these positions, compared to the center and medial positions for both density groups. This water
associated increase in attenuation can be explained by the location of the ducts and mammary
glands, respectively. Component scores #; suggest a decrease in attenuation due to oxy
hemoglobin and a concomitant increase due to deoxy hemoglobin at the distal and lateral regions
of the breast. Hence, the spatial prominence of various tissues within the breast is well reflected

in the scores.
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Principle Component Analysis by measurement position

The results of the PCA for each individual position and the subsequent analysis of
cluster plots in three dimensional spaces suggest that only two positions need to be interrogated:
the center and the distal. The high predictive value of the center position is explained by the fact
that parenchymal densities are rarely observed in this area of the breast in women with low and
medium tissue densities. Conversely, the high predictive value of the distal position results from
the location of the lactic ducts.

In general, the component spectra p; for these two positions are comparable with the
exception that component spectrum p; for the center position is similar to component spectrum p;z
for the distal position and vice versa (Fig. 7). Both component spectra (p; at center and p; at
distal) are spectrally flat over a large wavelength region with poor differentiation of the lipid and
‘water peaks. Consequently, cluster plots in a three dimensional space defined by #, # and #
result in a good separation between high and low tissue densities for the center position (Fig. 10)
and cluster plots in a three dimensional space defined by #;, #; and ¢ result in a good separation
between high and low tissue densities for the distal position (Fig. 11). The results of Mann-
Whitney U tests also demonstrated no significant difference in component scores #; between low
and high tissue densities (validation set) for the center position and in component scores f3
between low and high tissue densities (validation set) for the distal position (Figs. 8 and 9). This
exchange of the significance between p, and p; for the center and distal positions is most likely
limited by the small amount of variance captured by them in association with the limited number
of observations available to date. The p; for the medial and lateral positions show similar shapes
with the lateral being more similar to the distal and the medial more similar to the center.

HDM and LDM

20




Because radiological assigned parenchymal density is a global analysis, calculating HDM
and LDM from all eight spectra derived component scores induces obvious additional variability
as the density is not distributed homogeneously throughout the tissue. Using the mean score per
individual reduces the variability in the OTS predicted density within an individual’s breast

tissue (Fig. 5). This results in improved HDM and LDM for our validation set when mean scores

(Z) defined by #;, #; and #; or t, t; and #, are plotted in three dimensional space (Table 2).

However, when the mean scores (;f,—-) defined by #;, #; and #, or £, #; and #, are plotted in three

dimensional space, the LDM increases but the HDM decreases. This latter observation suggests
that the lipid to water ratio captured in component p; is better at differentiating high tissue
density than is the oxy to deoxy hemoglobin ratio captured by component p;.

The best estimation of a global classification is pooling spectra from different positions
(n = 2), since the patchy nature of the parenchyma is best reflected. The highest HDM and LDM
are achieved using spectra from the center and distal positions, such that if three or more of four
spectra indicate high tissue density, resulting in both density measured being above 96% (Figure
12a). The HDM and LDM based on these two positions might be a slight overestimate of the
predictive power of the test given that women who demonstrated variation in the bilateral organ
were excluded from analysis. However, it also suggests that improved PCA training is possible
if the regional tissue density associated with each optically interrogated volume is known.

The medial position provides acceptable HDM and LDM for our validation set. The
lateral position provides LDM comparable to the distal position, but the lowest HDM among
positions for our validation set. The difference in the predictive value of the different quadrants
is a direct reflection of the spatial prevalence of the parenchymal density pattern within the

breast 2.
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The HDM and LDM values obtained in our analysis are limited by two facts. First, only
one radiologist (R. Jong) was involved in the reading and classification of film mammograms.
Second and more important, we have approximated our three dimensional clusters by a linear
function. With regard to this point, future analysis will focus on improved density cluster
analysis of our component scores in three dimensional space, where the HDM and LDM are
likely to improve.

The HDM and LDM achieved by OTS are comparable to both mammography and other
spectroscopic techniques. A meta-analysis of published literature showed that the accuracy for
mammography alone, for all ages combined, varied from 83% to 95% in sensitivity?®. Other
spectroscopy studiés (i.e. optical and elastic scattering spectroscopy) examining the accuracy of
these techniques to diagnose breast cancer have achieved sensitivities between 58% and 91% and
specificities between 74% and 93% ' %

Component scores and physical parameters (Age and BMI)

As the population ages one would expect an increase in component scores #; and £, since
atrophy of the tissue (i.e. mammary glands), still ongoing past menopause, would result in less
light scatter and an increase in lipid content % From Figure 13 it is evident that there is but a
small increase in component scores #; with age for both low and high density tissue, and little to
no increase in #, with age for the low and high tissue density categories. This suggests that using
OTS as a predictive tool for breast cancer risk, its odds ratio or relative risk should be
independent of age. Similarly, with an increase in BMI one anticipates component scores # and

1, to increase and a small, but significant, association exists between BMI and component scores

t; and £, for the low tissue density group (Fig. 14). A cluster of scores #; and #, related to the high

22




density tissue is seen for low BMI, which results in an apparent large slope for this group;
. however, the correlation coefficients are weak.

While some statistically significant correlations can be established between age or BMI
and the component scores #; or #;, these associations are also dependent on a woman’s density
classification. Consequently, no correction for age or BMI is possible since the density of a
woman undergoing OTS measurements is not known a priori. This suggests that the
physiological changes in breast tissue density due to age and BMI are already contained in the
component spectra and hence captured by the derived component scores.

Conclusion

OTS is a physical assessment technique applicable to the entire population that only
requires information on the inter-optode distance and the measurements position on the breast in
cranial caudal projection (center, medial, distal, and lateral). Thus the spectra are independent of
the instrument and interrogated tissue thickness, and are hence portable between instruments.
Furthermore, only two positions need to be interrogated, the center and the distal, to produce
HDM and LDM values above 96%. Future, work should focus on establishing a direct
correlation with risk as not to become dependent on the limited odds ratio given by the currently
chosen intermediate standard, breast tissue density.
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Tables

Table 1. Breakdown of study volunteers: including study and population proportions and
total number of spectra analysed (in parentheses).

Density Training Validation Total Study  Population
Category Set Set Proportion Proportion
Low 46 15 61 39.0% 37.0%
(368) (120) (488)

Medium 51 17 68 43.6% 49.0%
(408) (136) (544)

High 20 7 27 17.3% 14.0%
(160) (56) (216)
Totals 117 39 156

(936) (312) (1248)

i
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Table 2. HDM and LDM for test and validation sets using all component scores and mean scores
per individual.

Equation Used Training Set Validation Set
HDM LDM HDM LDM

All scores 11 (t,1) 76.9% 88.3% 75.0% 96.7%
L1 1) 69.4% 87.5% 64.3% 92.5%

LF1) 48.1% 81.0% 58.9% 80.8%

tF 1) 56.9% 84.5% 60.7% 86.7%

Mean scores LI 85.0% 89.1% 85.7% 100.0%
NiRA 85.0% 82.6% 71.4% 93.3%

LfT) 50.0% 87.0% 42.9% 86.7%

L) 60.0% 89.1% 57.1% 93.3%
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Table 3. HDM and LDM for test and validation sets for each measurement position.

Position Equation Used Training Set Validation Set
HDM LDM HDM LDM
Center Lf(t,t,) 95.0% 87.0% 92.9% 90.0%
Distal Lf(t,t,) 90.0% 91.3% 100.0% 100.0%
Medial Lf(tt) 77.5% 71.7% 85.7% 86.7%
Lateral L, f(,t,) 80.0% 95.7% 71.4% 100.0%
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Figure Captions
Figure 1. Location of the transillumination measurements in the cranial caudal projection on a
standardized volunteer. Set up shows center position. Other positions include medial (M), distal
(D), and lateral (L).
Figure 2. Plot of principle components p; to ps of thickness and transfer function corrected

spectra. (Should we include examples of spectra from high and low tissue density?)

Figure 3. Box plots of component scores #;, #,, #; and #, for low, medium and high tissue density;
training spectra are left of the center line, validation spectra are to the right. Circles (> 20) and

asterisks (> 30) are outliers.

Figure 4. Three-dimensional cluster plot of #, £, and # resulting from thickness and transfer
corrected spectra of high and low tissue density. Only training data set shown (n = 528). Open
circles, spectra from tissue classified as low density; closed circles, spectra from tissue classified

as high density.

Figure 5. Three-dimensional cluster plot of mean scoresg, ;z—and gresulting from thickness

and transfer corrected spectra of high and low tissue density (n = 88). Open circles and squares,
spectra from tissue classified as low density, training and validation set, respectively; closed
circles and squares, spectra from tissue classified as high density, training and validation set,

respectively.

Figure 6. Mean component scores, Z(a), E(b), and ;;(c) for the four left measurement

positions (centre = LC, medial = LM, distal = LD, lateral = LL) for the low (open circles) and

high (closed circles) density tissue. Error bars represent 95% confidence intervals of the mean.
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Figure 7. Plots of principle components p; to p, for each measurement position a. center, b.
medial, c. distal, and d. lateral.

Figure 8. Box plots of component scores #, #, #; and #, for low, medium and high density tissue
for the centre position; training spectra are left of the center line, validation spectra are to the

right. Circles (> 20) and asterisks (> 3c) are outliers.

Figure 9. Box plots of component scores #;, #,, #; and #, for low, medium and high density tissue

for the distal position; training spectra left of the center line, validation spectra are to the right.

Circles (> 20) and asterisks (> 3c) are outliers.

- Figure 10. Three-dimensional cluster plot of #, #; and ¢, resulting from thickness and transfer
corrected spectra from high and low density tissue for the center position (n = 176). Opeh
symbols are low tissue density; closed symbols are high tissue density. Circles refer to training

set and squares to validation set.

Figure 11. Three-dimensional cluster plot of #;, #; and # resulting from thickness and transfer
corrected spectra from high and low density tissue for the distal position (n = 176). Open
symbols are low tissue density; closed symbols are high tissue density. Circles refer to training

set and squares to validation set.

Figure 12. The number of spectra from the center and distal positions (a) and the medial and
lateral positions (b) that correctly predicted high tissue density. High tissue density shown in

black, low tissue density shown in grey.
Figure 13. Scatter plots of averaged component scores Z(a) and E(b) per individual as a

function of age for high and low density categories (n = 88). Open circles and solid regression

line represent low tissue density, closed circles and dashed line represent high tissue density.
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Figure 14. Scatter plots of averaged component scores ;,-(a) and t—z_(b) per individual as a

function of BMI for high and low density categories (n = 88). Open circles and solid regression

line represent low tissue density; closed circles and dashed line represent high tissue density.
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